Skip to content

Building validation thresholds optimization #20

Building validation thresholds optimization

Building validation thresholds optimization #20

# Workflow name
name: "Building validation thresholds optimization"
on:
# Run workflow on user request
workflow_dispatch:
inputs:
sampling_name:
description: |
Sampling name :
Nom du dataset sur lequel le modèle a été entraîné.
Utilisé pour générer un chemin standard pour les entrées et sorties dans le
dossier IA du store (projet-LHD/IA/LIDAR-PROD-OPTIMIZATION/$SAMPLING_NAME/$MODEL_ID)
Eg. YYYYMMDD_MonBeauDataset
required: true
model_id:
description: |
Identifiant du modèle :
Utilisé pour générer un chemin standard pour les entrées et sorties dans le
dossier IA du store (projet-LHD/IA/LIDAR-PROD-OPTIMIZATION/$SAMPLING_NAME/$MODEL_ID)
Exemple : YYYMMDD_MonBeauSampling_epochXXX_Myria3Dx.y.z
required: true
jobs:
optimize-building-validation-thresholds:
runs-on: self-hosted
env:
WORKDIR: /var/data/LIDAR-PROD-OPTIMIZATION/
IO_DIR: /var/data/LIDAR-PROD-OPTIMIZATION/${{ github.event.inputs.sampling_name }}/${{ github.event.inputs.model_id }}/
DATA: /var/data/LIDAR-PROD-OPTIMIZATION/20221018_lidar-prod-optimization-on-151-proto/Comparison/
THRESHOLDS_FILE: valset-opti-results/optimized_thresholds.yaml
OUTPUT_CONFIG_FILE: LIDAR-PROD-${{ github.event.inputs.model_id }}.yaml
nexus_server: docker-registry.ign.fr
steps:
- name: Log configuration
run: |
echo "Optimize building validation threshold for a given trained model"
echo "Model ID ${{ github.event.inputs.model_id }}"
echo "input/output dir: ${{env.IO_DIR}}"
echo "data: ${{env.DATA}}"
echo "validation input_las_dir: ${{env.IO_DIR}}/preds-valset/"
echo "test input_las_dir: ${{env.IO_DIR}}/preds-testset/"
echo "output thresholds file: ${{env.IO_DIR}}/${{env.THRESHOLDS_FILE}}"
echo "output config file: ${{env.IO_DIR}}/${{env.OUTPUT_CONFIG_FILE}}"
echo "evaluation metrics (on test dataset): ${{env.IO_DIR}}/preds-testset/evaluation.yaml"
- name: Checkout branch
uses: actions/checkout@v4
# get version number, to retrieve the docker image corresponding to the current version
- name: Get version number
run: |
echo "VERSION=$(docker run lidar_prod python -m lidar_prod.version)" >> $GITHUB_ENV
- name: pull docker image tagged with current version
run: |
docker pull ${{ env.nexus_server }}/lidar_hd/lidar_prod:${{ env.VERSION }}
- name: Optimization and evaluation on validation dataset
run: >
docker run --network host
-v ${{env.IO_DIR}}:/io_dir
${{ env.nexus_server }}/lidar_hd/lidar_prod:${{ env.VERSION }}
python lidar_prod/run.py
++task=optimize_building
building_validation.optimization.todo='prepare+optimize+evaluate+update'
building_validation.optimization.paths.input_las_dir=/io_dir/preds-valset/
building_validation.optimization.paths.results_output_dir=/io_dir/valset-opti-results/
building_validation.optimization.paths.output_optimized_config=/io_dir/${{env.OUTPUT_CONFIG_FILE}}
hydra.run.dir=/io_dir/valset-opti-results/
- name: Evaluation on test dataset
run: >
docker run --network=host
-v ${{env.IO_DIR}}:/io_dir
${{ env.nexus_server }}/lidar_hd/lidar_prod:${{ env.VERSION }}
python lidar_prod/run.py
++task=optimize_building
building_validation.optimization.todo='prepare+evaluate+update'
building_validation.optimization.paths.input_las_dir=/io_dir/preds-testset/
building_validation.optimization.paths.results_output_dir=/io_dir/testset-opti-results/
building_validation.optimization.paths.building_validation_thresholds=/io_dir/${{env.THRESHOLDS_FILE}}
building_validation.optimization.paths.evaluation_results_yaml=/io_dir/preds-testset/evaluation.yaml
hydra.run.dir=/io_dir/testset-opti-results/
- name: Log evaluation results on test dataset
run: |
echo "Evaluation results on the test dataset"
echo "The most important metric to inspect is: p_auto (automation proportion)"
echo ""
cat ${{env.IO_DIR}}/preds-testset/evaluation.yaml