Skip to content

Commit

Permalink
updated lidar_hd_pre_transform function; the goal to work also with p…
Browse files Browse the repository at this point in the history
…oint clouds that have custom sets of features
  • Loading branch information
liubigli-tcp committed Apr 18, 2024
1 parent 8c01bdf commit c089c71
Show file tree
Hide file tree
Showing 4 changed files with 52 additions and 39 deletions.
3 changes: 3 additions & 0 deletions configs/datamodule/hdf5_datamodule.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@ points_pre_transform:
_target_: functools.partial
_args_:
- "${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform}"
pos_keys: ${dataset_description.pos_keys}
features_keys: ${dataset_description.features_keys}
color_keys: ${dataset_description.color_keys}

pre_filter:
_target_: functools.partial
Expand Down
4 changes: 4 additions & 0 deletions configs/dataset_description/20220607_151_dalles_proto.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@ classification_preprocessing_dict: {3: 5, 4: 5, 160: 64, 161: 64, 162: 64, 0: 1,
# classification_dict = {code_int: name_str, ...} and MUST be sorted (increasing order).
classification_dict: {1: "unclassified", 2: "ground", 5: vegetation, 6: "building", 9: water, 17: bridge, 64: lasting_above}

pos_keys: ["X", "Y", "Z"]
features_keys: ["Intensity", "ReturnNumber", "NumberOfReturns"]
color_keys: ["Red", "Green", "Blue", "Infrared"]

# class_weights for the CrossEntropyLoss with format "[[w1,w2,w3...,wk]]" with w_i a float e.g. 1.0
# Balanced CE: arbitrary weights based on heuristic.
# class_weights: [2.5,1.0,1.0,5.0,20.0,20.0,20.0] normalized so they sum to 7 to preserve scale of CELoss
Expand Down
3 changes: 3 additions & 0 deletions docs/source/apidoc/default_config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,9 @@ datamodule:
_target_: functools.partial
_args_:
- ${get_method:myria3d.pctl.points_pre_transform.lidar_hd.lidar_hd_pre_transform}
pos_keys: ${dataset_description.pos_keys}
features_keys: ${dataset_description.features_keys}
color_keys: ${dataset_description.color_keys}
pre_filter:
_target_: functools.partial
_args_:
Expand Down
81 changes: 42 additions & 39 deletions myria3d/pctl/points_pre_transform/lidar_hd.py
Original file line number Diff line number Diff line change
@@ -1,79 +1,82 @@
# function to turn points loaded via pdal into a pyg Data object, with additional channels
from typing import List
import numpy as np
import torch
from torch_geometric.data import Data

COLORS_NORMALIZATION_MAX_VALUE = 255.0 * 256.0
RETURN_NUMBER_NORMALIZATION_MAX_VALUE = 7.0


def lidar_hd_pre_transform(points):
def lidar_hd_pre_transform(points, pos_keys: List[str], features_keys: List[str], color_keys: List[str]):
"""Turn pdal points into torch-geometric Data object.
Builds a composite (average) color channel on the fly. Calculate NDVI on the fly.
Args:
las_filepath (str): path to the LAS file.
pos_keys (List[str]): list of keys for positions and base features
features_keys (List[str]): list of keys for
Returns:
Data: the point cloud formatted for later deep learning training.
"""

features = pos_keys + features_keys + color_keys
# Positions and base features
pos = np.asarray([points["X"], points["Y"], points["Z"]], dtype=np.float32).transpose()
pos = np.asarray([points[k] for k in pos_keys], dtype=np.float32).transpose()
# normalization
occluded_points = points["ReturnNumber"] > 1
if "ReturnNumber" in features:
occluded_points = points["ReturnNumber"] > 1
points["ReturnNumber"] = (points["ReturnNumber"]) / (RETURN_NUMBER_NORMALIZATION_MAX_VALUE)
points["NumberOfReturns"] = (points["NumberOfReturns"]) / (
RETURN_NUMBER_NORMALIZATION_MAX_VALUE
)
else:
occluded_points = np.zeros(pos.shape[0], dtype=np.bool_)

points["ReturnNumber"] = (points["ReturnNumber"]) / (RETURN_NUMBER_NORMALIZATION_MAX_VALUE)
points["NumberOfReturns"] = (points["NumberOfReturns"]) / (
RETURN_NUMBER_NORMALIZATION_MAX_VALUE
)

for color in ["Red", "Green", "Blue", "Infrared"]:
for color in color_keys:
assert points[color].max() <= COLORS_NORMALIZATION_MAX_VALUE
points[color][:] = points[color] / COLORS_NORMALIZATION_MAX_VALUE
points[color][occluded_points] = 0.0

# Additional features :
# Average color, that will be normalized on the fly based on single-sample
rgb_avg = (
np.asarray([points["Red"], points["Green"], points["Blue"]], dtype=np.float32)
.transpose()
.mean(axis=1)
)
if "Red" in color_keys and "Green" in color_keys and "Blue" in color_keys:
rgb_avg = (
np.asarray([points["Red"], points["Green"], points["Blue"]], dtype=np.float32)
.transpose()
.mean(axis=1)
)
else:
rgb_avg = None

# NDVI
ndvi = (points["Infrared"] - points["Red"]) / (points["Infrared"] + points["Red"] + 10**-6)
if "Infrared" in color_keys and "Red" in color_keys:
ndvi = (points["Infrared"] - points["Red"]) / (points["Infrared"] + points["Red"] + 10**-6)
else:
ndvi = None

additional_color_features = []
additional_color_keys = []
if rgb_avg is not None:
additional_color_features.append(rgb_avg)
additional_color_keys.append("rgb_avg")
if ndvi is not None:
additional_color_features.append(ndvi)
additional_color_keys.append("ndvi")

# todo
x = np.stack(
[
points[name]
for name in [
"Intensity",
"ReturnNumber",
"NumberOfReturns",
"Red",
"Green",
"Blue",
"Infrared",
]
for name in features_keys + color_keys
]
+ [rgb_avg, ndvi],
+ additional_color_features,
axis=0,
).transpose()
x_features_names = [
"Intensity",
"ReturnNumber",
"NumberOfReturns",
"Red",
"Green",
"Blue",
"Infrared",
"rgb_avg",
"ndvi",
]
x_features_names = [s.encode('utf-8') for s in (features_keys + color_keys + additional_color_keys)]
y = points["Classification"]

data = Data(pos=pos, x=x, y=y, x_features_names=x_features_names)
data = Data(pos=torch.from_numpy(pos), x=torch.from_numpy(x), y=y, x_features_names=x_features_names)

return data

0 comments on commit c089c71

Please sign in to comment.