Skip to content

Commit

Permalink
Add Scipy based solver
Browse files Browse the repository at this point in the history
As tests are comparing with original PyMC3 results, the tolerances are
set to larger tolerances.

Co-authored-by: Sven Willner <[email protected]>
Co-authored-by: Robert Gieseke <[email protected]>
  • Loading branch information
rgieseke and swillner committed Dec 10, 2024
1 parent 15cbd10 commit 248ad7b
Show file tree
Hide file tree
Showing 8 changed files with 1,354 additions and 3 deletions.
2 changes: 1 addition & 1 deletion attrici/commands/detrend.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def add_parser(subparsers):
group.add_argument(
"--solver",
type=str,
choices=["pymc5"],
choices=["pymc5", "scipy"],
default="pymc5",
help="Solver library for statistical modelling",
)
Expand Down
4 changes: 4 additions & 0 deletions attrici/detrend.py
Original file line number Diff line number Diff line change
Expand Up @@ -383,6 +383,10 @@ def detrend(config: Config):
from attrici.estimation.model_pymc5 import ModelPymc5

model_class = ModelPymc5
elif config.solver == "scipy":
from attrici.estimation.model_scipy import ModelScipy

model_class = ModelScipy
else:
raise ValueError(f"Unknown solver {config.solver}")

Expand Down
5 changes: 5 additions & 0 deletions attrici/estimation/model_pymc5.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
# Suppress verbose PyMC logging output
import logging
from dataclasses import dataclass

import numpy as np
Expand All @@ -7,6 +9,9 @@
from attrici import distributions
from attrici.estimation.model import AttriciGLM, Model

logger = logging.getLogger("pymc")
logger.setLevel(logging.WARNING)


def setup_parameter_model(name, parameter):
if isinstance(parameter, AttriciGLM.PredictorDependentParam):
Expand Down
314 changes: 314 additions & 0 deletions attrici/estimation/model_scipy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
from dataclasses import dataclass
from typing import Any, Callable

import numpy as np
from scipy import stats
from scipy.optimize import minimize

from attrici import distributions
from attrici.estimation.model import AttriciGLM, Model


def setup_parameter_model(name, parameter, params_first_index):
if isinstance(parameter, AttriciGLM.PredictorDependentParam):
return AttriciGLMScipy.PredictorDependentParam(
name=name, parameter=parameter, params_first_index=params_first_index
)
if isinstance(parameter, AttriciGLM.PredictorIndependentParam):
return AttriciGLMScipy.PredictorIndependentParam(
name=name, parameter=parameter, params_first_index=params_first_index
)
raise ValueError(f"Parameter type {type(parameter)} not supported")


def calc_oscillations(t, modes):
t_scaled = (t - t.min()) / (np.timedelta64(365, "D") + np.timedelta64(6, "h"))
x = (2 * np.pi * (np.arange(modes) + 1)) * t_scaled.values[:, None]
return np.concatenate((np.cos(x), np.sin(x)), axis=1)


class ParameterScipy:
pass


class AttriciGLMScipy:
PRIOR_INTERCEPT_MU = 0
PRIOR_INTERCEPT_SIGMA = 1
PRIOR_TREND_MU = 0
PRIOR_TREND_SIGMA = 0.1

@dataclass
class PredictorDependentParam(ParameterScipy):
name: str
params_first_index: int
parameter: AttriciGLM.PredictorDependentParam
covariates: Any = None

def get_initial_params(self):
return np.zeros(2 + 4 * self.parameter.modes)

def estimate(self, params):
weights_longterm_intercept = params[self.params_first_index]
weights_longterm_trend = params[self.params_first_index + 1]
weights_fc_intercept = params[
self.params_first_index + 2 : self.params_first_index
+ 2
+ 2 * self.parameter.modes
]
weights_fc_trend = params[
self.params_first_index
+ 2
+ 2 * self.parameter.modes : self.params_first_index
+ 2
+ 4 * self.parameter.modes
]

logp_prior = stats.norm.logpdf(
weights_longterm_intercept,
loc=AttriciGLMScipy.PRIOR_INTERCEPT_MU,
scale=AttriciGLMScipy.PRIOR_INTERCEPT_SIGMA,
)
logp_prior += stats.norm.logpdf(
weights_longterm_trend,
loc=AttriciGLMScipy.PRIOR_TREND_MU,
scale=AttriciGLMScipy.PRIOR_TREND_SIGMA,
)
logp_prior += np.sum(
[
stats.norm.logpdf(
weights_fc_intercept[i],
loc=AttriciGLMScipy.PRIOR_INTERCEPT_MU,
scale=1 / (2 * i + 1),
)
for i in range(self.parameter.modes)
]
)
logp_prior += np.sum(
[
stats.norm.logpdf(
weights_fc_trend[i],
loc=AttriciGLMScipy.PRIOR_TREND_MU,
scale=AttriciGLMScipy.PRIOR_TREND_SIGMA,
)
for i in range(self.parameter.modes)
]
)

weights_fc = np.concatenate([weights_fc_intercept, weights_fc_trend])
return (
np.dot(self.covariates, weights_fc)
+ weights_longterm_intercept
+ weights_longterm_trend * self.predictor
), logp_prior

def set_predictor_data(self, data):
oscillations = calc_oscillations(data.time, self.parameter.modes)
self.covariates = np.concatenate(
[
oscillations,
np.tile(data.values[:, None], (1, 2 * self.parameter.modes))
* oscillations,
],
axis=1,
)
self.predictor = data

@dataclass
class PredictorIndependentParam(ParameterScipy):
name: str
params_first_index: int
parameter: AttriciGLM.PredictorIndependentParam
oscillations: Any = None

def get_initial_params(self):
return np.zeros(1 + 2 * self.parameter.modes)

def estimate(self, params):
weights_longterm_intercept = params[self.params_first_index]
weights_fc_intercept = params[
self.params_first_index + 1 : self.params_first_index
+ 1
+ 2 * self.parameter.modes
]
logp_prior = stats.norm.logpdf(
weights_longterm_intercept,
loc=AttriciGLMScipy.PRIOR_INTERCEPT_MU,
scale=AttriciGLMScipy.PRIOR_INTERCEPT_SIGMA,
)
logp_prior += np.sum(
[
stats.norm.logpdf(
weights_fc_intercept[i],
loc=AttriciGLMScipy.PRIOR_INTERCEPT_MU,
scale=1 / (2 * i + 1),
)
for i in range(self.parameter.modes)
]
)

return (
self.parameter.link(
np.dot(self.oscillations, weights_fc_intercept)
+ weights_longterm_intercept
),
logp_prior,
)

def set_predictor_data(self, data):
self.oscillations = calc_oscillations(data.time, self.parameter.modes)


@dataclass
class DistributionScipy:
logpdf: Callable
parameters: dict[str, ParameterScipy]
observed: Any

def log_likelihood(self, params):
res = 0
params_dict = {}
for name, parameter in self.parameters.items():
p, logp = parameter.estimate(params)
res += logp
params_dict[name] = p
return res + np.sum(self.logpdf(self.observed, **params_dict))


def distribution_beta(x, mu, phi):
return stats.beta.logpdf(x, mu * phi, (1 - mu) * phi)


def distributions_gamma(x, mu, nu):
return stats.gamma.logpdf(x, nu**2, scale=mu / nu**2)


class ModelScipy(Model):
def __init__(
self,
distribution,
parameters,
observed,
predictor,
):
self._distribution_class = distribution
self._distributions = []
self._initial_params = np.asarray([])
self._parameter_models = {}
for name, parameter in parameters.items():
p = setup_parameter_model(name, parameter, len(self._initial_params))
self._initial_params = np.concatenate(
[self._initial_params, p.get_initial_params()]
)
self._parameter_models[name] = p

if distribution == distributions.BernoulliGamma:
observed_gamma = observed.sel(time=observed.notnull())

p = self._parameter_models["p"]
p.set_predictor_data(predictor)
mu = self._parameter_models["mu"]
mu.set_predictor_data(predictor.sel(time=observed_gamma.time))
nu = self._parameter_models["nu"]
nu.set_predictor_data(predictor.sel(time=observed_gamma.time))

self._distributions.append(
DistributionScipy(
logpdf=distributions_gamma,
parameters={"mu": mu, "nu": nu},
observed=observed_gamma,
)
)
self._distributions.append(
DistributionScipy(
logpdf=stats.bernoulli.logpmf,
parameters={"p": p},
observed=np.isnan(observed.values).astype(int),
)
)

elif distribution == distributions.Bernoulli:
p = self._parameter_models["p"]
p.set_predictor_data(predictor)
self._distributions.append(
DistributionScipy(
logpdf=stats.bernoulli.logpmf,
parameters={"p": p},
observed=observed,
)
)

elif distribution == distributions.Gamma:
mu = self._parameter_models["mu"]
mu.set_predictor_data(predictor)
nu = self._parameter_models["nu"]
nu.set_predictor_data(predictor)
self._distributions.append(
DistributionScipy(
logpdf=distributions_gamma,
parameters={"mu": mu, "nu": nu},
observed=observed,
)
)

elif distribution == distributions.Normal:
mu = self._parameter_models["mu"]
mu.set_predictor_data(predictor)
sigma = self._parameter_models["sigma"]
sigma.set_predictor_data(predictor)
self._distributions.append(
DistributionScipy(
logpdf=stats.norm.logpdf,
parameters={"loc": mu, "scale": sigma},
observed=observed,
)
)

elif distribution == distributions.Beta:
mu = self._parameter_models["mu"]
mu.set_predictor_data(predictor)
phi = self._parameter_models["phi"]
phi.set_predictor_data(predictor)
self._distributions.append(
DistributionScipy(
logpdf=distribution_beta,
parameters={"mu": mu, "phi": phi},
observed=observed,
)
)

elif distribution == distributions.Weibull:
alpha = self._parameter_models["alpha"]
alpha.set_predictor_data(predictor)
beta = self._parameter_models["beta"]
beta.set_predictor_data(predictor)
self._distributions.append(
DistributionScipy(
logpdf=stats.weibull_min.logpdf,
parameters={"c": alpha, "scale": beta},
observed=observed,
)
)

else:
raise ValueError(f"Distribution {distribution} not supported")

def fit(self, **_):
result = minimize(
lambda params: -sum(d.log_likelihood(params) for d in self._distributions),
self._initial_params,
method="L-BFGS-B",
)
self.logp = -result.fun
self.trace = result.x
return self.trace

def estimate_logp(self, **_):
return self.logp

def estimate_distribution(self, predictor, **_):
params = {}
for name, parameter_model in self._parameter_models.items():
parameter_model.set_predictor_data(predictor)
params[name], _ = parameter_model.estimate(self.trace)

return self._distribution_class(**params)
Loading

0 comments on commit 248ad7b

Please sign in to comment.