Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NDTensors] JLArrays Extension #1508

Merged
merged 44 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from 36 commits
Commits
Show all changes
44 commits
Select commit Hold shift + click to select a range
fc3ca6c
Start adding JLArrays extension
kmp5VT Jun 21, 2024
0c9aae6
Bump version
kmp5VT Jun 21, 2024
506a071
format
kmp5VT Jun 21, 2024
c4dad63
Add JLArrays to test to see what we need to add in NDTensors
kmp5VT Jun 21, 2024
f23d305
Add registryt to `TypeParameterAcessors
kmp5VT Jun 21, 2024
822411c
Fix spelling
kmp5VT Jun 22, 2024
e213bff
remove unnecessary functions
kmp5VT Jun 22, 2024
7068a63
format
kmp5VT Jun 22, 2024
b8b46a3
Remove dir
kmp5VT Jun 22, 2024
fd0866e
rename folder
kmp5VT Jun 22, 2024
2caf2d1
[no ci] alphabetize libraries
kmp5VT Jun 22, 2024
9ad5670
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Jun 23, 2024
0f1f277
Add JLArrays as dep and move CUDA to extras
kmp5VT Jun 23, 2024
95881d5
Moving to make JLArrays always run
kmp5VT Jun 23, 2024
0acdaec
Add cuda to see if theres still issues on Jenkins (my machine is fine)
kmp5VT Jun 23, 2024
a4687bd
Fix import
kmp5VT Jun 23, 2024
cdee270
Add Extension functions to JLArrays
kmp5VT Jun 23, 2024
d0b6a2f
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Jun 24, 2024
d6e675d
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Jun 26, 2024
bdacf0e
Fix the linear algebra and add jl to base tests
kmp5VT Jun 27, 2024
d2be3b3
format
kmp5VT Jun 27, 2024
9428514
Try activate before update registry
kmp5VT Jun 27, 2024
b3a2d87
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Jun 27, 2024
9165664
Move cuda back to deps
kmp5VT Jun 27, 2024
1cd131d
There is some issues with JLArrays on lower versions of Julia
kmp5VT Jun 28, 2024
6654671
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Jul 2, 2024
8a32daf
add back cuda
kmp5VT Jul 2, 2024
ad02066
Having JLArrays when testing GPUs creates an issue in test
kmp5VT Jul 2, 2024
8534859
Not using JLArrays in early versions of Julia
kmp5VT Jul 2, 2024
e2aa194
Move CUDA to extra
kmp5VT Jul 2, 2024
1078405
Add JLArrays back to deps
kmp5VT Jul 2, 2024
f47cf11
Bump CUDA test from 1.6 to 1.8
kmp5VT Jul 3, 2024
094c3e3
Small fix
kmp5VT Jul 9, 2024
b751d64
Merge branch 'main' into kmp5/feature/JLArrays_extension
kmp5VT Sep 4, 2024
1a14a33
Sparse arrays compat for lower versions
kmp5VT Sep 5, 2024
0aee394
Allow LinearAlgebr v0
mtfishman Sep 5, 2024
4e5c622
Allow Random v0
mtfishman Sep 5, 2024
1b976d0
Merge remote-tracking branch 'upstream/main' into kmp5/feature/JLArra…
kmp5VT Sep 18, 2024
6027cb6
Update to tests
kmp5VT Sep 18, 2024
12f43cb
typo
kmp5VT Sep 18, 2024
638377c
Remove Jenkins CUDA 1.8
kmp5VT Sep 19, 2024
4208487
Move default_typeparameters to AbstractArray
kmp5VT Sep 22, 2024
14922b1
Remove file
kmp5VT Sep 23, 2024
38092d8
AbstractGPUArrays -> AbstractArray
kmp5VT Sep 24, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions NDTensors/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
JLArrays = "27aeb0d3-9eb9-45fb-866b-73c2ecf80fcb"
MappedArrays = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
Octavian = "6fd5a793-0b7e-452c-907f-f8bfe9c57db4"
Expand All @@ -47,6 +48,7 @@ NDTensorsAMDGPUExt = ["AMDGPU", "GPUArraysCore"]
NDTensorsCUDAExt = ["CUDA", "GPUArraysCore"]
NDTensorsGPUArraysCoreExt = "GPUArraysCore"
NDTensorsHDF5Ext = "HDF5"
NDTensorsJLArraysExt = ["GPUArraysCore", "JLArrays"]
NDTensorsMappedArraysExt = ["MappedArrays"]
NDTensorsMetalExt = ["GPUArraysCore", "Metal"]
NDTensorsOctavianExt = "Octavian"
Expand All @@ -70,15 +72,16 @@ GPUArraysCore = "0.1"
HDF5 = "0.14, 0.15, 0.16, 0.17"
HalfIntegers = "1"
InlineStrings = "1"
LinearAlgebra = "1.6"
JLArrays = "0.1"
LinearAlgebra = "<0.0.1, 1.6"
MacroTools = "0.5"
MappedArrays = "0.4"
Metal = "1"
Octavian = "0.3"
PackageExtensionCompat = "1"
Random = "1.6"
mtfishman marked this conversation as resolved.
Show resolved Hide resolved
SimpleTraits = "0.9.4"
SparseArrays = "1.6"
SparseArrays = "<0.0.1, 1.6"
SplitApplyCombine = "1.2.2"
StaticArrays = "0.12, 1.0"
Strided = "2"
Expand All @@ -95,6 +98,7 @@ AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
JLArrays = "27aeb0d3-9eb9-45fb-866b-73c2ecf80fcb"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
Octavian = "6fd5a793-0b7e-452c-907f-f8bfe9c57db4"
TBLIS = "48530278-0828-4a49-9772-0f3830dfa1e9"
Expand Down
3 changes: 1 addition & 2 deletions NDTensors/ext/NDTensorsAMDGPUExt/set_types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,5 @@ using AMDGPU: AMDGPU, ROCArray
function TypeParameterAccessors.default_type_parameters(::Type{<:ROCArray})
return (Float64, 1, AMDGPU.Mem.HIPBuffer)
end
TypeParameterAccessors.position(::Type{<:ROCArray}, ::typeof(eltype)) = Position(1)
TypeParameterAccessors.position(::Type{<:ROCArray}, ::typeof(ndims)) = Position(2)

TypeParameterAccessors.position(::Type{<:ROCArray}, ::typeof(storagemode)) = Position(3)
6 changes: 0 additions & 6 deletions NDTensors/ext/NDTensorsCUDAExt/set_types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,6 @@ using CUDA: CUDA, CuArray
using NDTensors.TypeParameterAccessors: TypeParameterAccessors, Position
using NDTensors.GPUArraysCoreExtensions: storagemode

function TypeParameterAccessors.position(::Type{<:CuArray}, ::typeof(eltype))
return Position(1)
end
function TypeParameterAccessors.position(::Type{<:CuArray}, ::typeof(ndims))
return Position(2)
end
function TypeParameterAccessors.position(::Type{<:CuArray}, ::typeof(storagemode))
return Position(3)
end
Expand Down
8 changes: 8 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/NDTensorsJLArraysExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
module NDTensorsJLArraysExt
include("copyto.jl")
mtfishman marked this conversation as resolved.
Show resolved Hide resolved
include("indexing.jl")
include("linearalgebra.jl")
include("mul.jl")
include("permutedims.jl")
include("set_types.jl")
end
30 changes: 30 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/copyto.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
using JLArrays: JLArray
using NDTensors.Expose: Exposed, expose, unexpose
using LinearAlgebra: Adjoint

# Same definition as `CuArray`.
function Base.copy(src::Exposed{<:JLArray,<:Base.ReshapedArray})
return reshape(copy(parent(src)), size(unexpose(src)))
end

function Base.copy(
src::Exposed{
<:JLArray,<:SubArray{<:Any,<:Any,<:Base.ReshapedArray{<:Any,<:Any,<:Adjoint}}
},
)
return copy(@view copy(expose(parent(src)))[parentindices(unexpose(src))...])
end

# Catches a bug in `copyto!` in CUDA backend.
function Base.copyto!(dest::Exposed{<:JLArray}, src::Exposed{<:JLArray,<:SubArray})
copyto!(dest, expose(copy(src)))
return unexpose(dest)
end

# Catches a bug in `copyto!` in JLArray backend.
function Base.copyto!(
dest::Exposed{<:JLArray}, src::Exposed{<:JLArray,<:Base.ReshapedArray}
)
copyto!(dest, expose(parent(src)))
return unexpose(dest)
end
19 changes: 19 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/indexing.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
using JLArrays: JLArray
using GPUArraysCore: @allowscalar
using NDTensors: NDTensors
using NDTensors.Expose: Exposed, expose, unexpose

function Base.getindex(E::Exposed{<:JLArray})
return @allowscalar unexpose(E)[]
end

function Base.setindex!(E::Exposed{<:JLArray}, x::Number)
@allowscalar unexpose(E)[] = x
return unexpose(E)
end

function Base.getindex(E::Exposed{<:JLArray,<:Adjoint}, i, j)
return (expose(parent(E))[j, i])'
end

Base.any(f, E::Exposed{<:JLArray,<:NDTensors.Tensor}) = any(f, data(unexpose(E)))
40 changes: 40 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/linearalgebra.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
using Adapt: adapt
using JLArrays: JLArray, JLMatrix
using LinearAlgebra: LinearAlgebra, Hermitian, Symmetric, qr, eigen
using NDTensors: NDTensors
using NDTensors.Expose: Expose, expose, qr, qr_positive, ql, ql_positive
using NDTensors.GPUArraysCoreExtensions: cpu
using NDTensors.TypeParameterAccessors: unwrap_array_type

## TODO this function exists because of the same issue below. when
## that issue is resolved we can rely on the abstractarray version of
## this operation.
function Expose.qr(A::Exposed{<:JLArray})
Q, L = qr(unexpose(A))
return adapt(unwrap_array_type(A), Matrix(Q)), adapt(unwrap_array_type(A), L)
end
## TODO this should work using a JLArray but there is an error converting the Q from its packed QR from
## back into a JLArray see https://github.com/JuliaGPU/GPUArrays.jl/issues/545. To fix call cpu for now
function Expose.qr_positive(A::Exposed{<:JLArray})
Q, L = qr_positive(expose(cpu(A)))
return adapt(unwrap_array_type(A), copy(Q)), adapt(unwrap_array_type(A), L)
end

function Expose.ql(A::Exposed{<:JLMatrix})
Q, L = ql(expose(cpu(A)))
return adapt(unwrap_array_type(A), copy(Q)), adapt(unwrap_array_type(A), L)
end
function Expose.ql_positive(A::Exposed{<:JLMatrix})
Q, L = ql_positive(expose(cpu(A)))
return adapt(unwrap_array_type(A), copy(Q)), adapt(unwrap_array_type(A), L)
end

function LinearAlgebra.eigen(A::Exposed{<:JLMatrix,<:Symmetric})
q, l = (eigen(expose(cpu(A))))
return adapt.(unwrap_array_type(A), (q, l))
end

function LinearAlgebra.eigen(A::Exposed{<:JLMatrix,<:Hermitian})
q, l = (eigen(expose(Hermitian(cpu(unexpose(A).data)))))
return adapt.(JLArray, (q, l))
end
47 changes: 47 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/mul.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
using JLArrays: JLArray
using LinearAlgebra: LinearAlgebra, mul!, transpose
using NDTensors.Expose: Exposed, expose, unexpose

# This was calling generic matrix multiplication.
# TODO: Raise an issue with `CUDA.jl`.
function LinearAlgebra.mul!(
CM::Exposed{<:JLArray,<:LinearAlgebra.Transpose},
AM::Exposed{<:JLArray},
BM::Exposed{<:JLArray},
α,
β,
)
mul!(transpose(CM), transpose(BM), transpose(AM), α, β)
return unexpose(CM)
end

# This was calling generic matrix multiplication.
# TODO: Raise an issue with `CUDA.jl`.
function LinearAlgebra.mul!(
CM::Exposed{<:JLArray,<:LinearAlgebra.Adjoint},
AM::Exposed{<:JLArray},
BM::Exposed{<:JLArray},
α,
β,
)
mul!(CM', BM', AM', α, β)
return unexpose(CM)
end

## Fix issue in CUDA.jl where it cannot distinguish Transpose{Reshape{Adjoint{JLArray}}}
## as a JLArray and calls generic matmul
function LinearAlgebra.mul!(
CM::Exposed{<:JLArray},
AM::Exposed{<:JLArray},
BM::Exposed{
<:JLArray,
<:LinearAlgebra.Transpose{
<:Any,<:Base.ReshapedArray{<:Any,<:Any,<:LinearAlgebra.Adjoint}
},
},
α,
β,
)
mul!(CM, AM, expose(transpose(copy(expose(parent(BM))))), α, β)
return unexpose(CM)
end
24 changes: 24 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/permutedims.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
using JLArrays: JLArray
using LinearAlgebra: Adjoint
using NDTensors.Expose: Exposed, expose, unexpose

function Base.permutedims!(
Edest::Exposed{<:JLArray,<:Base.ReshapedArray}, Esrc::Exposed{<:JLArray}, perm
)
Aperm = permutedims(Esrc, perm)
copyto!(expose(parent(Edest)), expose(Aperm))
return unexpose(Edest)
end

## Found an issue in CUDA where if Edest is a reshaped{<:Adjoint}
## .= can fail. So instead force Esrc into the shape of parent(Edest)
function Base.permutedims!(
Edest::Exposed{<:JLArray,<:Base.ReshapedArray{<:Any,<:Any,<:Adjoint}},
Esrc::Exposed{<:JLArray},
perm,
f,
)
Aperm = reshape(permutedims(Esrc, perm), size(parent(Edest)))
parent(Edest) .= f.(parent(Edest), Aperm)
return unexpose(Edest)
end
7 changes: 7 additions & 0 deletions NDTensors/ext/NDTensorsJLArraysExt/set_types.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# TypeParameterAccessors definitions
using NDTensors.TypeParameterAccessors: TypeParameterAccessors, Position
using JLArrays: JLArray

function TypeParameterAccessors.default_type_parameters(::Type{<:JLArray})
return (Float64, 1)
end
7 changes: 0 additions & 7 deletions NDTensors/ext/NDTensorsMetalExt/set_types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,6 @@ using Metal: Metal, MtlArray
using NDTensors.TypeParameterAccessors: TypeParameterAccessors, Position
using NDTensors.GPUArraysCoreExtensions: storagemode

## TODO remove TypeParameterAccessors when SetParameters is removed
function TypeParameterAccessors.position(::Type{<:MtlArray}, ::typeof(eltype))
return Position(1)
end
function TypeParameterAccessors.position(::Type{<:MtlArray}, ::typeof(ndims))
return Position(2)
end
function TypeParameterAccessors.position(::Type{<:MtlArray}, ::typeof(storagemode))
return Position(3)
end
Expand Down
14 changes: 12 additions & 2 deletions NDTensors/test/NDTensorsTestUtils/device_list.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
using NDTensors: NDTensors
using Pkg: Pkg
using NDTensors: NDTensors

if "cuda" in ARGS || "all" in ARGS
## Right now adding CUDA during Pkg.test results in a
## compat issues. I am adding it back to test/Project.toml
# Pkg.add("CUDA")
Pkg.add("CUDA")
using CUDA
end
kmp5VT marked this conversation as resolved.
Show resolved Hide resolved
if "rocm" in ARGS || "all" in ARGS
Expand All @@ -18,13 +19,21 @@ if "metal" in ARGS || "all" in ARGS
end
if "cutensor" in ARGS || "all" in ARGS
Pkg.add("cuTENSOR")
Pkg.add("CUDA")
using CUDA, cuTENSOR
kmp5VT marked this conversation as resolved.
Show resolved Hide resolved
end
kmp5VT marked this conversation as resolved.
Show resolved Hide resolved

using JLArrays: JLArrays, jl

function devices_list(test_args)
devs = Vector{Function}(undef, 0)
if isempty(test_args) || "base" in test_args
push!(devs, NDTensors.cpu)
## Skip jl on lower versions of Julia for now
## all linear algebra is failing on Julia 1.6 with JLArrays
if VERSION > v"1.7"
mtfishman marked this conversation as resolved.
Show resolved Hide resolved
push!(devs, jl)
end
end

if "cuda" in test_args || "cutensor" in test_args || "all" in test_args
Expand All @@ -44,5 +53,6 @@ function devices_list(test_args)
if "metal" in test_args || "all" in test_args
push!(devs, NDTensors.MetalExtensions.mtl)
end

return devs
end
5 changes: 3 additions & 2 deletions NDTensors/test/Project.toml
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
BlockArrays = "8e7c35d0-a365-5155-bbbb-fb81a777f24e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
Dictionaries = "85a47980-9c8c-11e8-2b9f-f7ca1fa99fb4"
EllipsisNotation = "da5c29d0-fa7d-589e-88eb-ea29b0a81949"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
ITensors = "9136182c-28ba-11e9-034c-db9fb085ebd5"
JLArrays = "27aeb0d3-9eb9-45fb-866b-73c2ecf80fcb"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MappedArrays = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900"
NDTensors = "23ae76d9-e61a-49c4-8f12-3f1a16adf9cf"
Expand All @@ -24,10 +24,11 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
Metal = "1.1.0"
cuTENSOR = "2.0"
Metal = "1.1.0"

[extras]
AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
cuTENSOR = "011b41b2-24ef-40a8-b3eb-fa098493e9e1"
10 changes: 5 additions & 5 deletions jenkins/Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ pipeline {
stages {
stage('GPU Testing') {
parallel {
stage('NDTensorsCUDAExt julia-1.6') {
stage('NDTensorsCUDAExt julia-1.8') {
kmp5VT marked this conversation as resolved.
Show resolved Hide resolved
options {
timeout(time: 45, unit: 'MINUTES')
}
Expand All @@ -16,7 +16,7 @@ pipeline {
label 'gpu&&v100'
filename 'Dockerfile'
dir 'jenkins'
additionalBuildArgs '--build-arg JULIA=1.6'
additionalBuildArgs '--build-arg JULIA=1.8'
args '--gpus "device=0"'
}
}
Expand All @@ -27,7 +27,7 @@ pipeline {
}
steps {
sh '''
julia -e 'using Pkg; Pkg.Registry.update(); Pkg.update(); Pkg.activate(temp=true); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cuda"])'
julia -e 'using Pkg; Pkg.activate(temp=true); Pkg.Registry.update(); Pkg.update(); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cuda"])'
'''
}
}
Expand All @@ -51,7 +51,7 @@ pipeline {
}
steps {
sh '''
julia -e 'using Pkg; Pkg.Registry.update(); Pkg.update(); Pkg.activate(temp=true); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cuda"])'
julia -e 'using Pkg; Pkg.activate(temp=true); Pkg.Registry.update(); Pkg.update(); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cuda"])'
'''
}
}
Expand All @@ -75,7 +75,7 @@ pipeline {
}
steps {
sh '''
julia -e 'using Pkg; Pkg.Registry.update(); Pkg.update(); Pkg.activate(temp=true); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cutensor"])'
julia -e 'using Pkg; Pkg.activate(temp=true); Pkg.Registry.update(); Pkg.update(); Pkg.develop(path="./NDTensors"); Pkg.develop(path="."); Pkg.test("NDTensors"; test_args=["cutensor"])'
'''
}
}
Expand Down
Loading