Skip to content

Institute-Web-Science-and-Technologies/CGRE

Repository files navigation

CGRE FRAMEWORK

A Framework to create a dataset and use it to evaluate the Tesseract OCR software for the usecase on webpages. You can use it to evaluate other OCR software.

Pre: Docker:

    alias ocr='docker run ocr '
    alias ocrp='docker run ocr pipenv run python'
    https://www.digitalocean.com/community/questions/how-to-fix-docker-got-permission-denied-while-trying-to-connect-to-the-docker-daemon-socket
pyenv:
    ``https://github.com/pyenv/pyenv/wiki``
    (sudo apt-get update; sudo apt-get install --no-install-recommends make build-essential libssl-dev zlib1g-dev libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev)
    ``Im Zweifel: pipenv --rm``
    ``env PYTHON_CONFIGURE_OPTS="--enable-shared" pyenv install 3.7.2``
    ``pyenv local 3.7.2``
    ``pip install -U setuptools``

build docker image: docker build -t ocr .

start docker container (pipenv shell will be started automatically): docker run -v AbsolutePathToSomeDir:/data:rw -ti ocr

example call to create dataset: python dataset/creation/main.py -o /data/results -t 3 -v -b

main.py

-i:
    a file containing one url per line to use for crawling (not needed when crawling is skipped)
-o:
    path to an output folder        
-t:
    provide a number indicating on which entry to stop when parsing the crawl data (i.e. '-t 3' the 3 most used stylings per attribute will be parsed)
    Default:
        1
-s:
    enter a string indicating which step you want to skip, if you're string contains:
    'c' crawling will be skipped and the program assumes crawl data in '-c'
    'g' html generating will be skipped and the program assumes html data in '-g'
    'r' html rendering will be skipped and the program assumes rendered data in '-r'
-c:
    provide a path to where the crawl data file will be saved (in output folder)
    Default:
        'html'
-g:
    provide a path to where the html data file will be saved (in output folder)
    Default:
        'crawl.json'
-r:
    provide a path to where the rendered data file will be saved (in output folder)
    Default:
        'dataset'
-b:
    adds boxes to the rendered data, saved in output folder with the '-r' + '_boxes'
-v:
    creates visualisations for the crawled data
-z:
    zips the output folder

generate: pipenv run python generate_html.py => './html/font_family/font_size/font_style/layout.html'

render ( & save ): pipenv run python render_html.py

=> './dataset/font_family/font_size/font_style/layout.png'  
=> './dataset/font_family/font_size/font_style/layout.txt'  
    (contains words and their boxes in this format: // word\t(left,top,width,height)\n)  
    (first line contains path to the corresponding html file)

zip: pipenv run python zip_dataset.py

=> zips the 'dataset' directory with the same structure to 'dataset.zip'

evaluation: pipenv run python evaluation.py ideal recognized

=> evaluates the recognized dataset against the ideal
    True Positives 
    False Positives
    False Negatives
    Accuracy
    Precision
    Recall
    F1-Score
    (for respectively the localisation and the determination)
=> they need to have the same structure
=> results in 2 files:
    'evaluation_ideal_recognized.csv'
        (contains the )
    'evaluation_ideal_recognized.txt'

reset virtual env: pipenv --rm

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published