-
Notifications
You must be signed in to change notification settings - Fork 156
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1036 from asterycs/feature/resolve_dual_ambiguities2
Resolve Symbolics.Num - ForwardDiff.Dual ambiguities
- Loading branch information
Showing
4 changed files
with
367 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
module SymbolicsForwardDiffExt | ||
|
||
using ForwardDiff | ||
using ForwardDiff.NaNMath | ||
using ForwardDiff.DiffRules | ||
using ForwardDiff: value, Dual, partials | ||
using Symbolics | ||
|
||
# The method generation in this file have been adapted from | ||
# https://github.com/JuliaDiff/ForwardDiff.jl/blob/v0.10.36/src/dual.jl | ||
|
||
const AMBIGUOUS_TYPES = (Num,) | ||
|
||
#################################### | ||
# N-ary Operation Definition Tools # | ||
#################################### | ||
|
||
macro define_binary_dual_op(f, xy_body, x_body, y_body, Ts) | ||
FD = ForwardDiff | ||
defs = quote end | ||
for R in Ts | ||
expr = quote | ||
@inline $(f)(x::$FD.Dual{Tx}, y::$R) where {Tx} = $x_body | ||
@inline $(f)(x::$R, y::$FD.Dual{Ty}) where {Ty} = $y_body | ||
end | ||
append!(defs.args, expr.args) | ||
end | ||
return esc(defs) | ||
end | ||
|
||
macro define_ternary_dual_op(f, xyz_body, xy_body, xz_body, yz_body, x_body, y_body, z_body, Ts) | ||
FD = ForwardDiff | ||
defs = quote end | ||
for R in Ts | ||
expr = quote | ||
@inline $(f)(x::$FD.Dual{Txy}, y::$FD.Dual{Txy}, z::$R) where {Txy} = $xy_body | ||
@inline $(f)(x::$FD.Dual{Tx}, y::$FD.Dual{Ty}, z::$R) where {Tx, Ty} = Ty ≺ Tx ? $x_body : $y_body | ||
@inline $(f)(x::$FD.Dual{Txz}, y::$R, z::$FD.Dual{Txz}) where {Txz} = $xz_body | ||
@inline $(f)(x::$FD.Dual{Tx}, y::$R, z::$FD.Dual{Tz}) where {Tx,Tz} = Tz ≺ Tx ? $x_body : $z_body | ||
@inline $(f)(x::$R, y::$FD.Dual{Tyz}, z::$FD.Dual{Tyz}) where {Tyz} = $yz_body | ||
@inline $(f)(x::$R, y::$FD.Dual{Ty}, z::$FD.Dual{Tz}) where {Ty,Tz} = Tz ≺ Ty ? $y_body : $z_body | ||
end | ||
append!(defs.args, expr.args) | ||
for Q in Ts | ||
Q === R && continue | ||
expr = quote | ||
@inline $(f)(x::$FD.Dual{Tx}, y::$R, z::$Q) where {Tx} = $x_body | ||
@inline $(f)(x::$R, y::$FD.Dual{Ty}, z::$Q) where {Ty} = $y_body | ||
@inline $(f)(x::$R, y::$Q, z::$FD.Dual{Tz}) where {Tz} = $z_body | ||
end | ||
append!(defs.args, expr.args) | ||
end | ||
expr = quote | ||
@inline $(f)(x::$FD.Dual{Tx}, y::$R, z::$R) where {Tx} = $x_body | ||
@inline $(f)(x::$R, y::$FD.Dual{Ty}, z::$R) where {Ty} = $y_body | ||
@inline $(f)(x::$R, y::$R, z::$FD.Dual{Tz}) where {Tz} = $z_body | ||
end | ||
append!(defs.args, expr.args) | ||
end | ||
return esc(defs) | ||
end | ||
|
||
function binary_dual_definition(M, f, Ts) | ||
FD = ForwardDiff | ||
dvx, dvy = DiffRules.diffrule(M, f, :vx, :vy) | ||
Mf = M == :Base ? f : :($M.$f) | ||
xy_work = FD.qualified_cse!(quote | ||
val = $Mf(vx, vy) | ||
dvx = $dvx | ||
dvy = $dvy | ||
end) | ||
dvx, _ = DiffRules.diffrule(M, f, :vx, :y) | ||
x_work = FD.qualified_cse!(quote | ||
val = $Mf(vx, y) | ||
dvx = $dvx | ||
end) | ||
_, dvy = DiffRules.diffrule(M, f, :x, :vy) | ||
y_work = FD.qualified_cse!(quote | ||
val = $Mf(x, vy) | ||
dvy = $dvy | ||
end) | ||
expr = quote | ||
@define_binary_dual_op( | ||
$M.$f, | ||
begin | ||
vx, vy = $FD.value(x), $FD.value(y) | ||
$xy_work | ||
return $FD.dual_definition_retval(Val{Txy}(), val, dvx, $FD.partials(x), dvy, $FD.partials(y)) | ||
end, | ||
begin | ||
vx = $FD.value(x) | ||
$x_work | ||
return $FD.dual_definition_retval(Val{Tx}(), val, dvx, $FD.partials(x)) | ||
end, | ||
begin | ||
vy = $FD.value(y) | ||
$y_work | ||
return $FD.dual_definition_retval(Val{Ty}(), val, dvy, $FD.partials(y)) | ||
end, | ||
$Ts | ||
) | ||
end | ||
return expr | ||
end | ||
|
||
################################### | ||
# General Mathematical Operations # | ||
################################### | ||
|
||
for (M, f, arity) in DiffRules.diffrules(filter_modules = nothing) | ||
if (M, f) in ((:Base, :^), (:NaNMath, :pow), (:Base, :/), (:Base, :+), (:Base, :-), (:Base, :sin), (:Base, :cos)) | ||
continue # Skip methods which we define elsewhere. | ||
elseif !(isdefined(@__MODULE__, M) && isdefined(getfield(@__MODULE__, M), f)) | ||
continue # Skip rules for methods not defined in the current scope | ||
end | ||
if arity == 1 | ||
# no-op | ||
elseif arity == 2 | ||
eval(binary_dual_definition(M, f, AMBIGUOUS_TYPES)) | ||
else | ||
# no-op | ||
end | ||
end | ||
|
||
################# | ||
# Special Cases # | ||
################# | ||
|
||
# +/- # | ||
#-----# | ||
|
||
@eval begin | ||
@define_binary_dual_op( | ||
Base.:+, | ||
begin | ||
vx, vy = value(x), value(y) | ||
Dual{Txy}(vx + vy, partials(x) + partials(y)) | ||
end, | ||
Dual{Tx}(value(x) + y, partials(x)), | ||
Dual{Ty}(x + value(y), partials(y)), | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
|
||
@eval begin | ||
@define_binary_dual_op( | ||
Base.:-, | ||
begin | ||
vx, vy = value(x), value(y) | ||
Dual{Txy}(vx - vy, partials(x) - partials(y)) | ||
end, | ||
Dual{Tx}(value(x) - y, partials(x)), | ||
Dual{Ty}(x - value(y), -partials(y)), | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
|
||
# / # | ||
#---# | ||
|
||
# We can't use the normal diffrule autogeneration for this because (x/y) === (x * (1/y)) | ||
# doesn't generally hold true for floating point; see issue #264 | ||
@eval begin | ||
@define_binary_dual_op( | ||
Base.:/, | ||
begin | ||
vx, vy = value(x), value(y) | ||
Dual{Txy}(vx / vy, _div_partials(partials(x), partials(y), vx, vy)) | ||
end, | ||
Dual{Tx}(value(x) / y, partials(x) / y), | ||
begin | ||
v = value(y) | ||
divv = x / v | ||
Dual{Ty}(divv, -(divv / v) * partials(y)) | ||
end, | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
|
||
# exponentiation # | ||
#----------------# | ||
|
||
for f in (:(Base.:^), :(NaNMath.pow)) | ||
@eval begin | ||
@define_binary_dual_op( | ||
$f, | ||
begin | ||
vx, vy = value(x), value(y) | ||
expv = ($f)(vx, vy) | ||
powval = vy * ($f)(vx, vy - 1) | ||
if isconstant(y) | ||
logval = one(expv) | ||
elseif iszero(vx) && vy > 0 | ||
logval = zero(vx) | ||
else | ||
logval = expv * log(vx) | ||
end | ||
new_partials = _mul_partials(partials(x), partials(y), powval, logval) | ||
return Dual{Txy}(expv, new_partials) | ||
end, | ||
begin | ||
v = value(x) | ||
expv = ($f)(v, y) | ||
if y == zero(y) || iszero(partials(x)) | ||
new_partials = zero(partials(x)) | ||
else | ||
new_partials = partials(x) * y * ($f)(v, y - 1) | ||
end | ||
return Dual{Tx}(expv, new_partials) | ||
end, | ||
begin | ||
v = value(y) | ||
expv = ($f)(x, v) | ||
deriv = (iszero(x) && v > 0) ? zero(expv) : expv*log(x) | ||
return Dual{Ty}(expv, deriv * partials(y)) | ||
end, | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
end | ||
|
||
# hypot # | ||
#-------# | ||
|
||
@eval begin | ||
@define_ternary_dual_op( | ||
Base.hypot, | ||
calc_hypot(x, y, z, Txyz), | ||
calc_hypot(x, y, z, Txy), | ||
calc_hypot(x, y, z, Txz), | ||
calc_hypot(x, y, z, Tyz), | ||
calc_hypot(x, y, z, Tx), | ||
calc_hypot(x, y, z, Ty), | ||
calc_hypot(x, y, z, Tz), | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
|
||
# muladd # | ||
#--------# | ||
|
||
@eval begin | ||
@define_ternary_dual_op( | ||
Base.muladd, | ||
calc_muladd_xyz(x, y, z), # xyz_body | ||
calc_muladd_xy(x, y, z), # xy_body | ||
calc_muladd_xz(x, y, z), # xz_body | ||
Base.muladd(y, x, z), # yz_body | ||
Dual{Tx}(muladd(value(x), y, z), partials(x) * y), # x_body | ||
Base.muladd(y, x, z), # y_body | ||
Dual{Tz}(muladd(x, y, value(z)), partials(z)), # z_body | ||
$AMBIGUOUS_TYPES | ||
) | ||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
using ForwardDiff | ||
using Symbolics | ||
using Symbolics.SymbolicUtils | ||
using Symbolics.SymbolicUtils.SpecialFunctions | ||
using Symbolics.NaNMath | ||
using Test | ||
|
||
SF = SymbolicUtils.SpecialFunctions | ||
|
||
@variables x | ||
|
||
# Test functions from Symbolics # | ||
#-------------------------------# | ||
|
||
for f ∈ SymbolicUtils.basic_monadic | ||
fun = eval(:(ξ ->($f)(ξ))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
for f ∈ SymbolicUtils.monadic | ||
# The polygamma and trigamma functions seem to be missing rules in ForwardDiff. | ||
# The abs rule uses conditionals and cannot be used with Symbolics.Num. | ||
# acsc, asech, NanMath.log2 and NaNMath.log10 are tested separately | ||
if f ∈ (abs, SF.polygamma, SF.trigamma, acsc, acsch, asech, NaNMath.log2, NaNMath.log10) | ||
continue | ||
end | ||
|
||
fun = eval(:(ξ ->($f)(ξ))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
# These are evaluated numerically. For some reason isequal evaluates to false for the symbolic expressions. | ||
for f ∈ (acsc, asech, NaNMath.log2, NaNMath.log10) | ||
fun = eval(:(ξ ->($f)(ξ))) | ||
|
||
fd = ForwardDiff.derivative(fun, 1.0) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test fd ≈ substitute(sym, Dict(x => 1.0)) | ||
end | ||
|
||
for f ∈ SymbolicUtils.basic_diadic | ||
if f ∈ (//,) | ||
continue | ||
end | ||
|
||
fun = eval(:(ξ ->($f)(ξ, 2.0))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
for f ∈ SymbolicUtils.diadic | ||
if f ∈ (max, min, NaNMath.atanh, mod, rem, copysign, besselj, bessely, besseli, besselk) | ||
continue | ||
end | ||
|
||
fun = eval(:(ξ ->($f)(ξ, 2.0))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
for f ∈ (NaNMath.atanh,) | ||
fun = eval(:(ξ ->($f)(ξ))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
for f ∈ (besselj, bessely, besseli, besselk) | ||
fun = eval(:(ξ ->($f)(ξ, 2))) | ||
|
||
fd = ForwardDiff.derivative(fun, x) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test isequal(fd, sym) | ||
end | ||
|
||
# Additionally test these definitions from ForwardDiff # | ||
#------------------------------------------------------# | ||
|
||
# https://github.com/JuliaDiff/ForwardDiff.jl/blob/d3002093beb88ff0b98ed178377961dfd55c1247/src/dual.jl#L599 | ||
# and | ||
# https://github.com/JuliaDiff/ForwardDiff.jl/blob/d3002093beb88ff0b98ed178377961dfd55c1247/src/dual.jl#L683 | ||
for f ∈ (hypot, muladd) | ||
fun = eval(:(ξ ->($f)(ξ, 2.0, 3.0))) | ||
|
||
fd = ForwardDiff.derivative(fun, 5.0) | ||
sym = Symbolics.Differential(x)(fun(x)) |> expand_derivatives | ||
|
||
@test fd ≈ substitute(sym, Dict(x => 5.0)) | ||
end | ||
|
||
# fma is not defined for Symbolics.Num |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters