forked from SebLague/Procedural-Planets
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
335 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,335 @@ | ||
/* | ||
This file is part of libnoise-dotnet. | ||
libnoise-dotnet is free software: you can redistribute it and/or modify | ||
it under the terms of the GNU Lesser General Public License as published by | ||
the Free Software Foundation, either version 3 of the License, or | ||
(at your option) any later version. | ||
libnoise-dotnet is distributed in the hope that it will be useful, | ||
but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
GNU Lesser General Public License for more details. | ||
You should have received a copy of the GNU Lesser General Public License | ||
along with libnoise-dotnet. If not, see <http://www.gnu.org/licenses/>. | ||
Simplex Noise in 2D, 3D and 4D. Based on the example code of this paper: | ||
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | ||
From Stefan Gustavson, Linkping University, Sweden (stegu at itn dot liu dot se) | ||
From Karsten Schmidt (slight optimizations & restructuring) | ||
Some changes by Sebastian Lague for use in a tutorial series. | ||
*/ | ||
|
||
/* | ||
* Noise module that outputs 3-dimensional Simplex Perlin noise. | ||
* This algorithm has a computational cost of O(n+1) where n is the dimension. | ||
* | ||
* This noise module outputs values that usually range from | ||
* -1.0 to +1.0, but there are no guarantees that all output values will exist within that range. | ||
*/ | ||
|
||
using System; | ||
public class Noise | ||
{ | ||
#region Values | ||
/// Initial permutation table | ||
static readonly int[] Source = { | ||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, | ||
8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, | ||
117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, | ||
71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, | ||
55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, | ||
18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, | ||
124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, | ||
28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, | ||
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, | ||
242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, | ||
181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, | ||
67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 | ||
}; | ||
|
||
const int RandomSize = 256; | ||
const double Sqrt3 = 1.7320508075688772935; | ||
const double Sqrt5 = 2.2360679774997896964; | ||
int[] _random; | ||
|
||
/// Skewing and unskewing factors for 2D, 3D and 4D, | ||
/// some of them pre-multiplied. | ||
const double F2 = 0.5*(Sqrt3 - 1.0); | ||
|
||
const double G2 = (3.0 - Sqrt3)/6.0; | ||
const double G22 = G2*2.0 - 1; | ||
|
||
const double F3 = 1.0/3.0; | ||
const double G3 = 1.0/6.0; | ||
|
||
const double F4 = (Sqrt5 - 1.0)/4.0; | ||
const double G4 = (5.0 - Sqrt5)/20.0; | ||
const double G42 = G4*2.0; | ||
const double G43 = G4*3.0; | ||
const double G44 = G4*4.0 - 1.0; | ||
|
||
/// <summary> | ||
/// Gradient vectors for 3D (pointing to mid points of all edges of a unit | ||
/// cube) | ||
/// </summary> | ||
static readonly int[][] Grad3 = | ||
{ | ||
new[] {1, 1, 0}, new[] {-1, 1, 0}, new[] {1, -1, 0}, | ||
new[] {-1, -1, 0}, new[] {1, 0, 1}, new[] {-1, 0, 1}, | ||
new[] {1, 0, -1}, new[] {-1, 0, -1}, new[] {0, 1, 1}, | ||
new[] {0, -1, 1}, new[] {0, 1, -1}, new[] {0, -1, -1} | ||
}; | ||
#endregion | ||
|
||
public Noise() | ||
{ | ||
Randomize(0); | ||
} | ||
|
||
public Noise(int seed) | ||
{ | ||
Randomize(seed); | ||
} | ||
|
||
|
||
/// <summary> | ||
/// Generates value, typically in range [-1, 1] | ||
/// </summary> | ||
public float Evaluate(UnityEngine.Vector3 point) | ||
{ | ||
double x = point.x; | ||
double y = point.y; | ||
double z = point.z; | ||
double n0 = 0, n1 = 0, n2 = 0, n3 = 0; | ||
|
||
// Noise contributions from the four corners | ||
// Skew the input space to determine which simplex cell we're in | ||
double s = (x + y + z)*F3; | ||
|
||
// for 3D | ||
int i = FastFloor(x + s); | ||
int j = FastFloor(y + s); | ||
int k = FastFloor(z + s); | ||
|
||
double t = (i + j + k)*G3; | ||
|
||
// The x,y,z distances from the cell origin | ||
double x0 = x - (i - t); | ||
double y0 = y - (j - t); | ||
double z0 = z - (k - t); | ||
|
||
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | ||
// Determine which simplex we are in. | ||
// Offsets for second corner of simplex in (i,j,k) | ||
int i1, j1, k1; | ||
|
||
// coords | ||
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | ||
|
||
if (x0 >= y0) | ||
{ | ||
if (y0 >= z0) | ||
{ | ||
// X Y Z order | ||
i1 = 1; | ||
j1 = 0; | ||
k1 = 0; | ||
i2 = 1; | ||
j2 = 1; | ||
k2 = 0; | ||
} | ||
else if (x0 >= z0) | ||
{ | ||
// X Z Y order | ||
i1 = 1; | ||
j1 = 0; | ||
k1 = 0; | ||
i2 = 1; | ||
j2 = 0; | ||
k2 = 1; | ||
} | ||
else | ||
{ | ||
// Z X Y order | ||
i1 = 0; | ||
j1 = 0; | ||
k1 = 1; | ||
i2 = 1; | ||
j2 = 0; | ||
k2 = 1; | ||
} | ||
} | ||
else | ||
{ | ||
// x0 < y0 | ||
if (y0 < z0) | ||
{ | ||
// Z Y X order | ||
i1 = 0; | ||
j1 = 0; | ||
k1 = 1; | ||
i2 = 0; | ||
j2 = 1; | ||
k2 = 1; | ||
} | ||
else if (x0 < z0) | ||
{ | ||
// Y Z X order | ||
i1 = 0; | ||
j1 = 1; | ||
k1 = 0; | ||
i2 = 0; | ||
j2 = 1; | ||
k2 = 1; | ||
} | ||
else | ||
{ | ||
// Y X Z order | ||
i1 = 0; | ||
j1 = 1; | ||
k1 = 0; | ||
i2 = 1; | ||
j2 = 1; | ||
k2 = 0; | ||
} | ||
} | ||
|
||
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | ||
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), | ||
// and | ||
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), | ||
// where c = 1/6. | ||
|
||
// Offsets for second corner in (x,y,z) coords | ||
double x1 = x0 - i1 + G3; | ||
double y1 = y0 - j1 + G3; | ||
double z1 = z0 - k1 + G3; | ||
|
||
// Offsets for third corner in (x,y,z) | ||
double x2 = x0 - i2 + F3; | ||
double y2 = y0 - j2 + F3; | ||
double z2 = z0 - k2 + F3; | ||
|
||
// Offsets for last corner in (x,y,z) | ||
double x3 = x0 - 0.5; | ||
double y3 = y0 - 0.5; | ||
double z3 = z0 - 0.5; | ||
|
||
// Work out the hashed gradient indices of the four simplex corners | ||
int ii = i & 0xff; | ||
int jj = j & 0xff; | ||
int kk = k & 0xff; | ||
|
||
// Calculate the contribution from the four corners | ||
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; | ||
if (t0 > 0) | ||
{ | ||
t0 *= t0; | ||
int gi0 = _random[ii + _random[jj + _random[kk]]]%12; | ||
n0 = t0*t0*Dot(Grad3[gi0], x0, y0, z0); | ||
} | ||
|
||
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; | ||
if (t1 > 0) | ||
{ | ||
t1 *= t1; | ||
int gi1 = _random[ii + i1 + _random[jj + j1 + _random[kk + k1]]]%12; | ||
n1 = t1*t1*Dot(Grad3[gi1], x1, y1, z1); | ||
} | ||
|
||
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; | ||
if (t2 > 0) | ||
{ | ||
t2 *= t2; | ||
int gi2 = _random[ii + i2 + _random[jj + j2 + _random[kk + k2]]]%12; | ||
n2 = t2*t2*Dot(Grad3[gi2], x2, y2, z2); | ||
} | ||
|
||
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; | ||
if (t3 > 0) | ||
{ | ||
t3 *= t3; | ||
int gi3 = _random[ii + 1 + _random[jj + 1 + _random[kk + 1]]]%12; | ||
n3 = t3*t3*Dot(Grad3[gi3], x3, y3, z3); | ||
} | ||
|
||
// Add contributions from each corner to get the final noise value. | ||
// The result is scaled to stay just inside [-1,1] | ||
return (float)(n0 + n1 + n2 + n3)*32; | ||
} | ||
|
||
|
||
void Randomize(int seed) | ||
{ | ||
_random = new int[RandomSize * 2]; | ||
|
||
if (seed != 0) | ||
{ | ||
// Shuffle the array using the given seed | ||
// Unpack the seed into 4 bytes then perform a bitwise XOR operation | ||
// with each byte | ||
var F = new byte[4]; | ||
UnpackLittleUint32(seed, ref F); | ||
|
||
for (int i = 0; i < Source.Length; i++) | ||
{ | ||
_random[i] = Source[i] ^ F[0]; | ||
_random[i] ^= F[1]; | ||
_random[i] ^= F[2]; | ||
_random[i] ^= F[3]; | ||
|
||
_random[i + RandomSize] = _random[i]; | ||
} | ||
|
||
} | ||
else | ||
{ | ||
for (int i = 0; i < RandomSize; i++) | ||
_random[i + RandomSize] = _random[i] = Source[i]; | ||
} | ||
} | ||
|
||
static double Dot(int[] g, double x, double y, double z, double t) | ||
{ | ||
return g[0] * x + g[1] * y + g[2] * z + g[3] * t; | ||
} | ||
|
||
static double Dot(int[] g, double x, double y, double z) | ||
{ | ||
return g[0] * x + g[1] * y + g[2] * z; | ||
} | ||
|
||
static double Dot(int[] g, double x, double y) | ||
{ | ||
return g[0] * x + g[1] * y; | ||
} | ||
|
||
static int FastFloor(double x) | ||
{ | ||
return x >= 0 ? (int)x : (int)x - 1; | ||
} | ||
|
||
/// <summary> | ||
/// Unpack the given integer (int32) to an array of 4 bytes in little endian format. | ||
/// If the length of the buffer is too smal, it wil be resized. | ||
/// </summary> | ||
/// <param name="value">The value.</param> | ||
/// <param name="buffer">The output buffer.</param> | ||
static byte[] UnpackLittleUint32(int value, ref byte[] buffer) | ||
{ | ||
if (buffer.Length < 4) | ||
Array.Resize(ref buffer, 4); | ||
|
||
buffer[0] = (byte)(value & 0x00ff); | ||
buffer[1] = (byte)((value & 0xff00) >> 8); | ||
buffer[2] = (byte)((value & 0x00ff0000) >> 16); | ||
buffer[3] = (byte)((value & 0xff000000) >> 24); | ||
|
||
return buffer; | ||
} | ||
|
||
} | ||
|