Releases: Lightning-Universe/lightning-bolts
Improved YOLO models
[0.7.0] - 2022-06-30
Added
- Improved YOLO model includes YOLOv4, YOLOv5, and YOLOX networks and training algorithms (#817)
Changed
- Move SSL transforms to pl_bolts/transforms (#905)
- Reviewed
models.detection.yolo
(#851) - Reviewed
LogisticRegression
(#950) - Bumped support of min python version to py3.8+ (#1021)
- Update
numpy
compatibility to <1.25.0 (#959) - Update
torchmetrics
compatibility to <0.12.0 (#1016) - Update
pytorch-lightning
compatibility to >1.7.0,<2.0.0 (#965, #973, #1006)
Fixed
- Dropped reference to
torch._six
(#993)
New Contributors
- @AdeelH made their first contribution in #939
- @AndresAlgaba made their first contribution in #967
- @Delaunay made their first contribution in #982
- @cdeepali made their first contribution in #993
- @NeoKish made their first contribution in #944
- @julien-blanchon made their first contribution in #973
- @qxcv made their first contribution in #964
- @vishnu-dev made their first contribution in #965
- @eggry made their first contribution in #960
- @heimish-kyma made their first contribution in #851
Full Changelog: 0.6.0...0.7.0
Minor patch release
What's Changed
Full Changelog: 0.6.0...0.6.0.post1
Revisions and compatibility
[0.6.0] - 2022-11-03
Added
-
Updated SparseML callback for latest PyTorch Lightning (#822)
-
Updated torch version to v1.10.X (#815)
-
Dataset specific args method to CIFAR10, ImageNet, MNIST, and STL10 (#890)
-
Migrate to use
lightning-utilities
(#907) -
Support PyTorch Lightning v1.8 (#910)
-
Major revision of Bolts
under_review
flag (#835, #837)- Reviewing GAN basics,
VisionDataModule
,MNISTDataModule
,CIFAR10DataModule
(#843) - Added tests, updated doc-strings for Dummy Datasets (#865)
- Binary MNIST/EMNIST Datasets and Datamodules (#866)
- FashionMNIST/EMNIST Datamodules (#871)
- Revision
ArrayDataset
(#872) - BYOL weight update callback (#867)
- Revision
models.vision.unet
,models.vision.segmentation
(#880) - Revision of SimCLR transforms (#857)
- Revision Metrics (#878, #887)
- Revision of BYOL module and tests (#874)
- Revision of MNIST module (#873)
- Revision of dataset normalizations (#898)
- Revision of SimSiam module and tests (#891)
- Revision
datasets.kitti_dataset.KittiDataset
(#896) - SWAV improvements (#903)
- minor dcgan-import fix (#921)
Fixed
- Removing extra flatten (#809)
- support number of channels!=3 in YOLOConfiguration (#806)
- CVE-2007-4559 Patch (#894)
Contributors
@ArnolFokam, @Atharva-Phatak, @BaruchG, @Benjamin-Etheredge, @Borda, @Ce11an, @clementpoiret, @kfirgedal, @lijm1358, @matsumotosan, @nishantb06, @otaj, @rohitgr7, @shivammehta25, @TrellixVulnTeam
If we forgot someone due to not matching commit email with GitHub account, let us know :]
More object detection models and backbones
[0.5.0] - 2021-12-20
Added
- Added YOLO model (#552)
- Added
SRGAN
,SRImageLoggerCallback
,TVTDataModule
,SRCelebA
,SRMNIST
,SRSTL10
(#466) - Added nn.Module support for FasterRCNN backbone (#661)
- Added
RetinaNet
with torchvision backbones (#529) - Added Python 3.9 support (#786)
Changed
- VAE now uses deterministic KL divergence during training, previously estimated KL divergence by random sampling (#760)
Removed
Fixed
- Fixed doctest fails with ImportError: cannot import name 'Env' from 'gym' (#751)
- Fixed MoCo v2 missing Cosine Annealing learning scheduler (#757)
Contributors
@abhayraw1 @akihironitta @chris-clem @hoangtnm @nmichlo @oke-aditya @Programmer-RD-AI @senarvi
If we forgot someone due to not matching commit email with GitHub account, let us know :]
More RL and callbacks
[0.4.0] - 2021-09-09
Added
- Added Soft Actor Critic (SAC) Model (#627)
- Added
EMNISTDataModule
,BinaryEMNISTDataModule
, andBinaryEMNIST
dataset (#676) - Added Advantage Actor-Critic (A2C) Model (#598)
- Added Torch ORT Callback (#720)
- Added SparseML Callback (#724)
Changed
- Changed the default values
pin_memory=False
,shuffle=False
andnum_workers=16
topin_memory=True
,shuffle=True
andnum_workers=0
of datamodules (#701) - Supporting deprecated attribute usage (#699)
Fixed
- Fixed ImageNet val loader to use val transform instead of train transform (#713)
- Fixed the MNIST download giving HTTP 404 with
torchvision>=0.9.1
(#674) - Removed momentum updating from val step and add separate val queue (#631)
- Fixed moving the queue to GPU when resuming checkpoint for SwAV model (#684)
- Fixed FP16 support with vision GPT model (#694)
- Removing bias from linear model regularisation (#669)
- Fixed CPC module issue (#680)
less softmax
updated LARS
typing friendly
compatibility PyTorch 1.8
[0.3.1] - 2021-03-09
Added
- Added Pix2Pix model (#533)
Changed
- Moved vision models (
GPT2
,ImageGPT
,SemSegment
,UNet
) topl_bolts.models.vision
(#561)
Fixed
- Fixed BYOL moving average update (#574)
- Fixed custom gamma in rl (#550)
- Fixed PyTorch 1.8 compatibility issue (#580, #579)
- Fixed handling batchnorms in
BatchGradientVerification
[#569) - Corrected
num_rows
calculation inLatentDimInterpolator
callback (#573)
Contributors
@akihironitta, @aniketmaurya, @BartekRoszak, @FlorianMF, @indigoviolet, @kaushikb11, @mxksowie, @wjn0
If we forgot someone due to not matching commit email with GitHub account, let us know :]
major fixes & refactoring
Detail chnages
Added
- Added
input_channels
argument to UNet (#297) - Added SwAV (#239, #348, #323)
- Added data monitor callbacks
ModuleDataMonitor
andTrainingDataMonitor
(#285) - Added DCGAN module (#403)
- Added
VisionDataModule
as parent class forBinaryMNISTDataModule
,CIFAR10DataModule
,FashionMNISTDataModule
,
andMNISTDataModule
(#400) - Added GIoU loss (#347)
- Added IoU loss (#469)
- Added semantic segmentation model
SemSegment
withUNet
backend (#259) - Added option to normalize latent interpolation images (#438)
- Added flags to datamodules (#388)
- Added metric GIoU (#347)
- Added Intersection over Union Metric/Loss (#469)
- Added SimSiam model (#407)
- Added gradient verification callback (#465)
- Added Backbones to FRCNN (#475)
Changed
- Decoupled datamodules from models (#332, #270)
- Set PyTorch Lightning 1.0 as the minimum requirement (#274)
- Moved
pl_bolts.callbacks.self_supervised.BYOLMAWeightUpdate
topl_bolts.callbacks.byol_updates.BYOLMAWeightUpdate
(#288) - Moved
pl_bolts.callbacks.self_supervised.SSLOnlineEvaluator
topl_bolts.callbacks.ssl_online.SSLOnlineEvaluator
(#288) - Moved
pl_bolts.datamodules.*_dataset
topl_bolts.datasets.*_dataset
(#275) - Ensured sync across val/test step when using DDP (#371)
- Refactored CLI arguments of models (#394)
- Upgraded DQN to use
.log
(#404) - Decoupled DataModules from models - CPCV2 (#386)
- Refactored datamodules/datasets (#338)
- Refactored Vision DataModules (#400)
- Refactored
pl_bolts.callbacks
(#477) - Refactored the rest of
pl_bolts.models.self_supervised
(#481, #479) - Update [
torchvision.utils.make_grid
(https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid)] kwargs toTensorboardGenerativeModelImageSampler
(#494)
Fixed
- Fixed duplicate warnings when optional packages are unavailable (#341)
- Fixed
ModuleNotFoundError
when importing datamoules (#303) - Fixed cyclic imports in
pl_bolts.utils.self_suprvised
(#350) - Fixed VAE loss to use KL term of ELBO (#330)
- Fixed dataloders of
MNISTDataModule
to useself.batch_size
(#331) - Fixed missing
outputs
in SSL hooks for PyTorch Lightning 1.0 (#277) - Fixed stl10 datamodule (#369)
- Fixes SimCLR transforms (#329)
- Fixed binary MNIST datamodule (#377)
- Fixed the end of batch size mismatch (#389)
- Fixed
batch_size
parameter for DataModules remaining (#344) - Fixed CIFAR
num_samples
(#432) - Fixed DQN
run_n_episodes
using the wrong environment variable (#525)
Contributors
@akihironitta, @ananyahjha93, @annikabrundyn, @awaelchli, @Borda, @briankosw, @chris-clem, @deng-cy, @hecoding, @miccio-dk, @oke-aditya, @SeanNaren, @sid-sundrani, @teddykoker, @zlapp
If we forgot someone due to not matching commit email with GitHub account, let us know :]