Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue 149: VGG-like Convolutional Neural Network Classifier #152

Merged
merged 5 commits into from
Apr 20, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
272 changes: 272 additions & 0 deletions mlprimitives/jsons/keras.Sequential.VGGCNNClassifier.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
{
"name": "keras.Sequential.VGGCNNClassifier",
"contributors": [
"Hector Dominguez <[email protected]>"
],
"description": "VGG-like Convolutional Neural Network Classifier",
"classifiers": {
"type": "estimator",
"subtype": "classifier"
},
"modalities": [],
"primitive": "mlprimitives.adapters.keras.Sequential",
"fit": {
"method": "fit",
"args": [
{
"name": "X",
"type": "ndarray"
},
{
"name": "y",
"type": "array"
},
{
"name": "classes",
"type": "int",
"description": "Number of classes"
}
]
},
"produce": {
"method": "predict",
"args": [
{
"name": "X",
"type": "ndarray"
}
],
"output": [
{
"name": "y",
"type": "array"
}
]
},
"hyperparameters": {
"fixed": {
"classification": {
"type": "bool",
"default": true
},
"conv2d_1_filters": {
"type": "int",
"default": 32
},
"input_shape": {
"type": "list",
"default": [
224,
224,
3
]
},
"conv2d_2_filters": {
"type": "int",
"default": 32
},
"conv2d_3_filters": {
"type": "int",
"default": 32
},
"conv2d_4_filters": {
"type": "int",
"default": 32
},
"loss": {
"type": "str",
"default": "keras.losses.categorical_crossentropy"
},
"optimizer": {
"type": "str",
"default": "keras.optimizers.SGD"
},
"metrics": {
"type": "list",
"default": [
"accuracy"
]
},
"epochs": {
"type": "int",
"default": 20
},
"verbose": {
"type": "int",
"default": 0,
"range": [
0,
2
]
},
"layers": {
"type": "list",
"default": [
{
"class": "keras.layers.Conv2D",
"parameters": {
"filters": "conv2d_1_filters",
"kernel_size": "conv2d_1_kernel_size",
"activation": "relu",
"input_shape": "input_shape"
}
},
{
"class": "keras.layers.Conv2D",
"parameters": {
"filters": "conv2d_2_filters",
"kernel_size": "conv2d_2_kernel_size",
"activation": "relu"
}
},
{
"class": "keras.layers.MaxPooling2D",
"parameters": {
"pool_size": "maxpooling2d_1_pool_size"
}
},
{
"class": "keras.layers.Dropout",
"parameters": {
"rate": "dropout_1_rate"
}
},
{
"class": "keras.layers.Conv2D",
"parameters": {
"filters": "conv2d_3_filters",
"kernel_size": "conv2d_3_kernel_size",
"activation": "relu"
}
},
{
"class": "keras.layers.Conv2D",
"parameters": {
"filters": "conv2d_4_filters",
"kernel_size": "conv2d_4_kernel_size",
"activation": "relu"
}
},
{
"class": "keras.layers.MaxPooling2D",
"parameters": {
"pool_size": "maxpooling2d_2_pool_size"
}
},
{
"class": "keras.layers.Dropout",
"parameters": {
"rate": "dropout_2_rate"
}
},
{
"class": "keras.layers.Flatten",
"parameters": {}
},
{
"class": "keras.layers.Dense",
"parameters": {
"units": "dense_units",
"activation": "relu"
}
},
{
"class": "keras.layers.Dropout",
"parameters": {
"rate": "dropout_3_rate"
}
},
{
"class": "keras.layers.Dense",
"parameters": {
"units": "classes",
"activation": "softmax"
}
}
]
}
},
"tunable": {
"conv2d_1_kernel_size": {
"type": "int",
"default": 3,
"range": [
3,
10
]
},
"conv2d_2_kernel_size": {
"type": "int",
"default": 3,
"range": [
3,
10
]
},
"maxpooling2d_1_pool_size": {
"type": "int",
"default": 2,
"range": [
2,
10
]
},
"dropout_1_rate": {
"type": "float",
"default": 0.0,
"range": [
0.0,
0.75
]
},
"conv2d_3_kernel_size": {
"type": "int",
"default": 3,
"range": [
3,
10
]
},
"conv2d_4_kernel_size": {
"type": "int",
"default": 3,
"range": [
3,
10
]
},
"maxpooling2d_2_pool_size": {
"type": "int",
"default": 2,
"range": [
2,
10
]
},
"dropout_2_rate": {
"type": "float",
"default": 0.0,
"range": [
0.0,
0.75
]
},
"dense_units": {
"type": "int",
"default": 64,
"range": [
1,
500
]
},
"dropout_3_rate": {
"type": "float",
"default": 0.5,
"range": [
0.0,
0.75
]
}
}
}
}
33 changes: 33 additions & 0 deletions pipelines/keras.Sequential.VGGCNNClassifier.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
{
"metadata": {
"name": "keras.Sequential.VGGCNNClassifier",
"data_type": "image",
"task_type": "classification"
},
"validation": {
"dataset": "usps",
"context": {}
},
"primitives": [
"mlprimitives.custom.counters.UniqueCounter",
"keras.Sequential.VGGCNNClassifier"
],
"input_names": {
"mlprimitives.custom.counters.UniqueCounter#1": {
"X": "y"
}
},
"output_names": {
"mlprimitives.custom.counters.UniqueCounter#1": {
"counts": "classes"
}
},
"init_params": {
"mlprimitives.custom.counters.UniqueCounter#1": {
"add": 1
},
"keras.Sequential.VGGCNNClassifier#1": {
"epochs": 1
}
}
}