Skip to content

Algorithm to solve Poisson equation using parallel programming.

Notifications You must be signed in to change notification settings

MediaBilly/Poisson-Equation-Parallel-Solver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Poisson Equation Parallel Solver

A parallel algorithm to solve Poisson Equation using Jacobi with Successive Over-Relaxation(S.O.R) algorithm.

The goal of this project was to develop a parallel program that numerically solves Poisson's equation:

equation

in range [-1,1]x[-1,1].

The program calculates the values of the matrix u in the range above and also outputs the error between the numerical and the analytical solution which is:

equation

The libraries we used to parallelize the algorithm are:

  • MPI
  • Hybrid MPI+OpenMp
  • CUDA

Execution Instructions

  • To run the MPI program, navigate to the ParallelMPI folder, compile using make and run with mpirun jacobi_parallel_mpi.x -c < input where input is the input file with the parameters(example given in the folder).
  • To run the Hybrid MPI+OpenMp program, navigate to the HybridMPI folder, compile using make and run with mpirun --bind-to none jacobi_hybrid_mpi.x -c < input where input is the input file with the parameters(example given in the folder).
  • To run the CUDA program, navigate to the CUDA folder, compile with make and run with ./jacobi_cuda.x < input for 1 GPU or ./jacobi_cuda_2gpus.x < input for 2 GPUs.

NOTE: All the programs come with a pbs script, because the benchmarks were made in a cluster provided by our university called argo. To run them on your own system, the process may be different.

Benchmarks

The benchmarks below, were made in a cluster provided by our university called argo which consists of the following nodes:

  • A front-end or master node (Dell OptiPlex 7050) to which we remotely connect to and has the following specs:
    • Quad-Core Intel-Core i5-6500 @3.20GHz
    • RAM 16GB DDR4 2.4GHz
  • 10 compute nodes (Dell PowerEdge 1950) connected to the master node with ethernet 1G which were used to make the MPI and Hybrid MPI+OpenMP benchmarks. Each one of those has the following specs:
    • Dual XEON E5340 @2.66GHz quad core (total 8 cores each node)
    • RAM 16GB DDR2 667MHz
    • Bus interconnection
    • Connected together with 10G ethernet
  • 1 GPU compute node (Dell Precision 7920 Rack):
    • Intel Xeon Silver 4114 @ 2.2 GHz
    • 10 Cores with hyperthreading
    • RAM 16GB (2X8GB) DDR4 2666MHz
    • Dual Nvidia Quatro P4000:
      • 1792 CUDA cores
      • RAM 8GB
      • Memory Bandwidth: 243 GB/s

In the benchmarks below, Speedup and Efficiency are defined as follows:

  • The Speedup is calculated as S/p where S is the sequeltial time and p is the parallel time
  • The Efficiency is calculated as s/t where s is the speedup and t is the number of processes or threads used.

The default parameters used are:

  • alpha - Helmholtz constant = 0.8
  • relax - successive over-relaxation parameter = 1.0
  • tol - error tolerance for the iterrative solver = 1e-13
  • mits - maximum solver iterations = 50

Here are the benchmarks we made in each program using the above cluster:

Sequential Program:

Grid Size 840x840 1680x1680 3360x3360 6720x6720 13440x13440 26880x26880
Time(seconds) 0.511 1.905 7.48 29.77 118.953 477.191
Error 0.000633904 0.000317239 0.000158679 7.93528e-05 3.96795e-05 1.98405e-05

MPI Program without convergence check (no AllReduce calls):

Timings
Grid Size/ Processes 1 4 9 16 25 36 49 64 80
840x840 0.800 0.203 0.097 0.072 0.045 0.046 0.039 0.039 0.042
1680x1680 3.185 0.816 0.377 0.215 0.147 0.105 0.095 0.076 0.076
3360x3360 12.700 3.241 1.474 0.933 0.561 0.411 0.299 0.227 0.194
6720x6720 50.775 12.839 5.794 3.604 2.191 1.636 1.149 0.928 0.761
13440x13440 202.996 51.198 23.022 14.184 8.555 6.385 4.408 3.610 2.903
26880x26880 815.197 204.764 91.834 56.695 33.995 25.227 17.460 14.304 11.420
Speedup
Grid Size/ Processes 1 4 9 16 25 36 49 64 80
840x840 1 3.94 8.21 11.04 17.77 17.50 20.47 20.46 18.91
1680x1680 1 3.90 8.46 14.81 21.67 30.26 33.58 42.05 41.78
3360x3360 1 3.92 8.62 13.61 22.65 30.89 42.52 55.92 65.45
6720x6720 1 3.95 8.76 14.09 23.17 31.04 44.17 54.72 66.71
13440x13440 1 3.96 8.82 14.31 23.73 31.79 46.05 56.22 69.93
26880x26880 1 3.98 8.88 14.38 23.98 32.31 46.69 56.99 71.39
Efficiency
Grid Size/ Processes 1 4 9 16 25 36 49 64 80
840x840 1 0.99 0.91 0.69 0.71 0.49 0.42 0.32 0.24
1680x1680 1 0.98 0.94 0.93 0.87 0.84 0.69 0.66 0.52
3360x3360 1 0.98 0.96 0.85 0.91 0.86 0.87 0.87 0.82
6720x6720 1 0.99 0.97 0.88 0.93 0.86 0.90 0.85 0.83
13440x13440 1 0.99 0.98 0.89 0.95 0.88 0.94 0.88 0.87
26880x26880 1 1.00 0.99 0.90 0.96 0.90 0.95 0.89 0.89

MPI Program with convergence check (with AllReduce calls):

Timings
Grid Size/ Διεργασίες 1 4 9 16 25 36 49 64 80
840x840 0.803 0.211 0.110 0.080 0.078 0.074 0.064 0.043 0.081
1680x1680 3.183 0.826 0.376 0.234 0.166 0.155 0.128 0.111 0.108
3360x3360 12.700 3.244 1.479 0.936 0.579 0.457 0.333 0.250 0.270
6720x6720 50.779 12.849 5.783 3.604 2.183 1.666 1.180 0.969 0.796
13440x13440 202.993 51.211 22.956 14.189 8.546 6.393 4.440 3.623 2.930
26880x26880 817.426 204.736 91.542 56.489 33.825 25.254 17.367 14.220 11.436
Speedup
Grid Size/ Διεργασίες 1 4 9 16 25 36 49 64 80
840x840 1 3.80 7.28 9.98 10.35 10.91 12.52 18.50 9.93
1680x1680 1 3.85 8.47 13.62 19.19 20.53 24.78 28.76 29.44
3360x3360 1 3.92 8.59 13.57 21.92 27.79 38.12 50.80 46.98
6720x6720 1 3.95 8.78 14.09 23.26 30.48 43.02 52.38 63.79
13440x13440 1 3.96 8.84 14.31 23.75 31.75 45.72 56.02 69.28
26880x26880 1 3.99 8.93 14.47 24.17 32.37 47.07 57.48 71.48
Efficiency
Grid Size/ Διεργασίες 1 4 9 16 25 36 49 64 80
840x840 1 0.95 0.81 0.62 0.41 0.30 0.26 0.29 0.12
1680x1680 1 0.96 0.94 0.85 0.77 0.57 0.51 0.45 0.37
3360x3360 1 0.98 0.95 0.85 0.88 0.77 0.78 0.79 0.59
6720x6720 1 0.99 0.98 0.88 0.93 0.85 0.88 0.82 0.80
13440x13440 1 0.99 0.98 0.89 0.95 0.88 0.93 0.88 0.87
26880x26880 1 1.00 0.99 0.90 0.97 0.90 0.96 0.90 0.89

Hybrid MPI+OpenMp Program without convergence check (no AllReduce calls):

Timings
Grid Size/ Processes - Threads 1 1p-4t 2p-8t 4p-16t 9p-36t 16p-64t 20p-80t
840x840 0.800 0.205 0.106 0.071 0.037 0.041 0.068
1680x1680 3.185 0.810 0.446 0.226 0.108 0.083 0.056
3360x3360 12.700 3.211 1.801 0.931 0.420 0.241 0.195
6720x6720 50.775 12.820 7.091 3.563 1.655 0.948 0.776
13440x13440 202.996 51.167 28.149 14.185 6.434 3.668 2.936
26880x26880 815.197 207.841 115.079 56.544 25.572 14.486 11.744
Speedup
Grid Size/ Threads 1 4 8 16 36 64 80
840x840 1 3.90 7.54 11.26 21.84 19.39 11.69
1680x1680 1 3.93 7.14 14.08 29.52 38.53 57.07
3360x3360 1 3.96 7.05 13.65 30.25 52.67 65.26
6720x6720 1 3.96 7.16 14.25 30.68 53.56 65.44
13440x13440 1 3.97 7.21 14.31 31.55 55.34 69.15
26880x26880 1 3.92 7.08 14.42 31.88 56.27 69.42
Efficiency
Grid Size/ Threads 1 4 8 16 36 64 80
840x840 1 0.98 0.94 0.70 0.61 0.30 0.15
1680x1680 1 0.98 0.89 0.88 0.82 0.60 0.71
3360x3360 1 0.99 0.88 0.85 0.84 0.82 0.82
6720x6720 1 0.99 0.90 0.89 0.85 0.84 0.82
13440x13440 1 0.99 0.90 0.89 0.88 0.86 0.86
26880x26880 1 0.98 0.89 0.90 0.89 0.88 0.87

Hybrid MPI+OpenMp Program with convergence check (with AllReduce calls):

Timings
Grid Size/ Processes - Threads 1 1p-4t 2p-8t 4p-16t 9p-36t 16p-64t 20p-80t
840x840 0.803 0.205 0.114 0.071 0.051 0.068 0.059
1680x1680 3.183 0.811 0.456 0.237 0.127 0.093 0.074
3360x3360 12.700 3.208 1.776 0.938 0.434 0.264 0.242
6720x6720 50.779 12.813 7.070 3.599 1.653 0.959 0.778
13440x13440 202.993 51.122 28.082 14.242 6.427 3.674 3.108
26880x26880 817.426 207.031 115.019 56.769 25.465 14.352 11.619
Speedup
Grid Size/ Threads 1 4 8 16 36 64 80
840x840 1 3.92 7.04 11.30 15.75 11.73 13.53
1680x1680 1 3.93 6.98 13.40 25.05 34.27 43.05
3360x3360 1 3.96 7.15 13.54 29.25 48.16 52.41
6720x6720 1 3.96 7.18 14.11 30.73 52.97 65.26
13440x13440 1 3.97 7.23 14.25 31.59 55.25 65.32
26880x26880 1 3.95 7.11 14.40 32.10 56.95 70.35
Efficiency
Grid Size/ Threads 1 4 8 16 36 64 80
840x840 1 0.98 0.88 0.71 0.44 0.18 0.17
1680x1680 1 0.98 0.87 0.84 0.70 0.54 0.54
3360x3360 1 0.99 0.89 0.85 0.81 0.75 0.66
6720x6720 1 0.99 0.90 0.88 0.85 0.83 0.82
13440x13440 1 0.99 0.90 0.89 0.88 0.86 0.82
26880x26880 1 0.99 0.89 0.90 0.89 0.89 0.88

CUDA Program

Timings
Grid Size 1 GPU 2 GPUs
840x840 0.011 0.007
1680x1680 0.040 0.022
3360x3360 0.160 0.085
6720x6720 0.569 0.317
13440x13440 1.923 1.040
26880x26880 - 3.748

*The big grid could not be computed with 1 GPU because of insufficient VRAM.

Conclusion:

As you can see, the CUDA program has the best performance because GPUs have tons of threads (which means they can execute tons of computations in parallel), and extremely fast vram.

Contributors:

  1. Vasilis Kiriakopoulos
  2. Dimitris Koutsakis