Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new P_gq parametrisation #380

Merged
merged 5 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions doc/source/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1062,3 +1062,14 @@ @article{Ablinger:2024xtt
year = "2024",
journal = ""
}

@article{Falcioni:2024xyt,
author = "Falcioni, G. and Herzog, F. and Moch, S. and Pelloni, A. and Vogt, A.",
title = "{Four-loop splitting functions in QCD -- The quark-to-gluon case}",
eprint = "2404.09701",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "ZU-TH 20/24, DESY-24-053, LTH 1367",
month = "4",
year = "2024"
}
5 changes: 3 additions & 2 deletions doc/source/theory/N3LO_ad.rst
Original file line number Diff line number Diff line change
Expand Up @@ -264,7 +264,8 @@ The other parts are approximated using some known limits:
& \gamma_{qg}(2) + \gamma_{gg}(2) = 0 \\
& \gamma_{qq}(2) + \gamma_{gq}(2) = 0 \\

For :math:`\gamma_{qq,ps}, \gamma_{qg}` other 5 additional moments are available :cite:`Falcioni:2023luc,Falcioni:2023vqq`.
For :math:`\gamma_{qq,ps}, \gamma_{qg},\gamma_{gq}` other 5 additional moments are available
giacomomagni marked this conversation as resolved.
Show resolved Hide resolved
:cite:`Falcioni:2023luc,Falcioni:2023vqq,Falcioni:2024xyt` respectively.
making the parametrization of this splitting function much more accurate.

The difference between the known moments and the known limits is parametrized
Expand Down Expand Up @@ -337,7 +338,7 @@ final reduced sets of candidates.
* - :math:`f_4(N)`
- :math:`\frac{1}{N^4},\ \frac{1}{N^3},\ \frac{1}{N^2},\ \frac{1}{(N+1)},\ \frac{1}{(N+2)},\ \mathcal{M}[\ln^2(1-x)],\ \mathcal{M}[\ln(1-x)]`

Following :cite:`Moch:2023tdj` we have assumed no violation of the scaling with :math:`\gamma_{gg}`
Following :cite:`Moch:2023tdj,Falcioni:2024xyt` we have assumed no violation of the scaling with :math:`\gamma_{gg}`
also for the |NLL| small-x term, to help the convergence. We expect that any possible deviation can be parametrized as a shift in the |NNLL| terms
which are free to vary independently.

Expand Down
2 changes: 1 addition & 1 deletion extras/n3lo_bench/plot_msht.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

n3lo_vars_dict = {
"gg": 19,
"gq": 21,
"gq": 15,
"qg": 15,
"qq": 6,
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,28 @@

import numba as nb

from eko.constants import zeta2

from ......harmonics import cache as c
from ......harmonics.log_functions import lm12, lm13, lm14, lm15
from ......harmonics.log_functions import (
lm11,
lm12,
lm12m1,
lm13,
lm14,
lm14m1,
lm15,
lm15m1,
)


@nb.njit(cache=True)
def gamma_gq(n, nf, cache, variation):
r"""Compute the |N3LO| gluon-quark singlet anomalous dimension.

The routine is taken from :cite:`Moch:2023tdj`.
The routine is taken from :cite:`Falcioni:2024xyt`.
Lower moments were published also in :cite:`Moch:2023tdj`.


Parameters
----------
Expand Down Expand Up @@ -40,76 +53,118 @@ def gamma_gq(n, nf, cache, variation):
# Known large-x coefficients
x1L5cff = 1.3443073 * 10 - 5.4869684 * 0.1 * nf
x1L4cff = 3.7539831 * 10**2 - 3.4494742 * 10 * nf + 8.7791495 * 0.1 * nf2
y1L5cff = 2.2222222 * 10 - 5.4869684 * 0.1 * nf
y1L4cff = 6.6242163 * 10**2 - 4.7992684 * 10 * nf + 8.7791495 * 0.1 * nf2

# Small-x, Casimir scaled from P_gg (approx. for bfkl1)
bfkl0 = -8.3086173 * 10**3 / 2.25
bfkl1 = (-1.0691199 * 10**5 - nf * 9.9638304 * 10**2) / 2.25

# Small-x double-logs with x^0
x0L6cff = 5.2235940 * 10 - 7.3744856 * nf
x0L5cff = -2.9221399 * 10**2 + 1.8436214 * nf
x0L4cff = 7.3106077 * 10**3 - 3.7887135 * 10**2 * nf - 3.2438957 * 10 * nf2

# The resulting part of the function
P3GQ01 = (
+bfkl0 * (-(6 / (-1 + n) ** 4))
+ bfkl1 * 2 / (-1 + n) ** 3
+ x0L6cff * 720 / n**7
+ x0L5cff * -120 / n**6
+ x0L4cff * 24 / n**5
+ x1L4cff * lm14(n, S1, S2, S3, S4)
+ x1L5cff * lm15(n, S1, S2, S3, S4, S5)
+ y1L4cff * lm14m1(n, S1, S2, S3, S4)
+ y1L5cff * lm15m1(n, S1, S2, S3, S4, S5)
)

# The selected approximations for nf = 3, 4, 5
if nf == 3:
P3gqApp1 = (
P3GQ01
+ 3.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 161562.0 * 1 / ((-1 + n) * n)
+ 36469.0 * 1 / n
+ 72317.0 * (-(1 / n**2))
- 3977.3 * lm12(n, S1, S2)
+ 484.4 * lm13(n, S1, S2, S3)
+ 6.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 744384.0 * 1 / ((-1 + n) * n)
+ 2453640.0 * 1 / n
- 1540404.0 * (2 / (1 + n) + 1 / (2 + n))
+ 1933026.0 * -1 / n**2
+ 1142069.0 * 2 / n**3
+ 162196.0 * -6 / n**4
- 2172.1 * lm13(n, S1, S2, S3)
- 93264.1 * lm12(n, S1, S2)
- 786973.0 * lm11(n, S1)
+ 875383.0 * lm12m1(n, S1, S2)
)
P3gqApp2 = (
P3GQ01
+ 5.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 546482.0 * 1 / ((-1 + n) * n)
- 39464.0 * 1 / n
- 401000.0 * (-(1 / n**2))
+ 13270.0 * lm12(n, S1, S2)
+ 3289.0 * lm13(n, S1, S2, S3)
+ 3.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
+ 142414.0 * 1 / ((-1 + n) * n)
- 326525.0 * 1 / n
+ 2159787.0 * ((3 + n) / (2 + 3 * n + n**2))
- 289064.0 * -1 / n**2
- 176358.0 * 2 / n**3
+ 156541.0 * -6 / n**4
+ 9016.5 * lm13(n, S1, S2, S3)
+ 136063.0 * lm12(n, S1, S2)
+ 829482.0 * lm11(n, S1)
- 2359050.0 * (S1 - n * (zeta2 - S2)) / n**2
)
elif nf == 4:
P3gqApp1 = (
P3GQ01
+ 3.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 158805.0 * 1 / ((-1 + n) * n)
+ 35098.0 * 1 / n
+ 87258.0 * (-(1 / n**2))
- 4834.1 * lm12(n, S1, S2)
+ 176.6 * lm13(n, S1, S2, S3)
+ 6.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 743535.0 * 1 / ((-1 + n) * n)
+ 2125286.0 * 1 / n
- 1332472.0 * (2 / (1 + n) + 1 / (2 + n))
+ 1631173.0 * -1 / n**2
+ 1015255.0 * 2 / n**3
+ 142612.0 * -6 / n**4
- 1910.4 * lm13(n, S1, S2, S3)
- 80851.0 * lm12(n, S1, S2)
- 680219.0 * lm11(n, S1)
+ 752733.0 * lm12m1(n, S1, S2)
)
P3gqApp2 = (
P3GQ01
+ 5.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 547215.0 * 1 / ((-1 + n) * n)
- 41523.0 * 1 / n
- 390350.0 * (-(1 / n**2))
+ 12571.0 * lm12(n, S1, S2)
+ 3007.0 * lm13(n, S1, S2, S3)
+ 3.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
+ 160568.0 * 1 / ((-1 + n) * n)
- 361207.0 * 1 / n
+ 2048948.0 * ((3 + n) / (2 + 3 * n + n**2))
- 245963.0 * -1 / n**2
- 171312.0 * 2 / n**3
+ 163099.0 * -6 / n**4
+ 8132.2 * lm13(n, S1, S2, S3)
+ 124425.0 * lm12(n, S1, S2)
+ 762435.0 * lm11(n, S1)
- 2193335.0 * (S1 - n * (zeta2 - S2)) / n**2
)
elif nf == 5:
P3gqApp1 = (
P3GQ01
+ 3.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 154336.0 * 1 / ((-1 + n) * n)
+ 33889.0 * 1 / n
+ 103440.0 * (-(1 / n**2))
- 5745.8 * lm12(n, S1, S2)
- 128.6 * lm13(n, S1, S2, S3)
+ 6.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 785864.0 * 1 / ((-1 + n) * n)
+ 285034.0 * 1 / n
- 131648.0 * (2 / (1 + n) + 1 / (2 + n))
- 162840.0 * -1 / n**2
+ 321220.0 * 2 / n**3
+ 12688.0 * -6 / n**4
+ 1423.4 * lm13(n, S1, S2, S3)
+ 1278.9 * lm12(n, S1, S2)
- 30919.9 * lm11(n, S1)
+ 47588.0 * lm12m1(n, S1, S2)
)
P3gqApp2 = (
P3GQ01
+ 5.4 * bfkl1 * (-(1 / (-1 + n) ** 2))
- 546236.0 * 1 / ((-1 + n) * n)
- 43421.0 * 1 / n
- 378460.0 * (-(1 / n**2))
+ 11816.0 * lm12(n, S1, S2)
+ 2727.3 * lm13(n, S1, S2, S3)
+ 3.0 * bfkl1 * (-(1 / (-1 + n) ** 2))
+ 177094.0 * 1 / ((-1 + n) * n)
- 470694.0 * 1 / n
+ 1348823.0 * ((3 + n) / (2 + 3 * n + n**2))
- 52985.0 * -1 / n**2
- 87354.0 * 2 / n**3
+ 176885.0 * -6 / n**4
+ 4748.8 * lm13(n, S1, S2, S3)
+ 65811.9 * lm12(n, S1, S2)
+ 396390.0 * lm11(n, S1)
- 1190212.0 * (S1 - n * (zeta2 - S2)) / n**2
)
else:
raise NotImplementedError("nf=6 is not available at N3LO")
Expand Down
Loading
Loading