-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Generate kfactors for polarized observables #132
Closed
Closed
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
ef015b2
Initial F1 generator ready.
toonhasenack 7e2d356
Adjustment for compatibility of output with Pineko
toonhasenack 044e1a4
Adjusted docstring, arg types and some minor stuff
toonhasenack 0d43d7b
Added the g1 and corrected proton/neutron case
toonhasenack 359b37d
g1f1 polarized flag fix and kfactors
toonhasenack 91c3a1a
Merge branch 'main' into generate_kfactors
toonhasenack fa75aeb
automation good
toonhasenack e62dbbe
theory key for g1f1
toonhasenack 2c8d260
initial push for ALL normalization
toonhasenack 57b3b5e
g1f1 correctly adopted for nFONLL
toonhasenack a18ff15
1/2xF1 for ALL too
toonhasenack File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import lhapdf | ||
import pineappl | ||
import yaml | ||
from glob import glob | ||
from datetime import datetime as dt | ||
import numpy as np | ||
import os | ||
import argparse | ||
from typing import List, Tuple | ||
|
||
|
||
def get_file(folder: str, data: str, theory: str) -> Tuple[str, List[str]]: | ||
""" | ||
Get a list of paths to PineAPPL grids in the specified folder. | ||
|
||
Parameters | ||
---------- | ||
folder : str | ||
The folder path where PineAPPL grids are located. | ||
data : str | ||
Name of the commondata set. | ||
|
||
Returns | ||
------- | ||
pdf_name : str | ||
The name of the PDF dataset. | ||
gpaths : List[str] | ||
List of paths to PineAPPL grid files. | ||
""" | ||
file = glob(folder + f"/{data}_F1.pineappl.lz4")[0] | ||
return file | ||
|
||
|
||
def get_prediction(file: str, pdf_name: str, folder: str) -> np.ndarray: | ||
""" | ||
Get predictions by convoluting a PineAPPL grid with a LHAPDF PDF. | ||
|
||
Parameters | ||
---------- | ||
|
||
file : str | ||
Path to the PineAPPL grid file. | ||
pdf_name : str | ||
The name of the LHAPDF dataset. | ||
folder: str | ||
Path to the kinematics.yaml grid file. | ||
|
||
Returns | ||
------- | ||
prediction : np.ndarray | ||
Computed predictions. | ||
""" | ||
|
||
# Load the PineAPPL grid | ||
grid = pineappl.grid.Grid.read(file) | ||
|
||
# Load the LHAPDF | ||
pdf = lhapdf.mkPDF(pdf_name) | ||
|
||
# Proton reference number | ||
nr = 2212 | ||
|
||
# Perform the convolution | ||
convolution = grid.convolute_with_one( | ||
nr, # Type of target | ||
pdf.xfxQ2, # The PDF callable pdf.xfxQ2(pid, x, Q2) -> xfx | ||
pdf.alphasQ2, # The alpha_s callable pdf.alpha_s(Q2) -> alpha_s | ||
) | ||
|
||
with open(folder + "/kinematics.yaml", "r") as file: | ||
data = yaml.safe_load(file) | ||
|
||
bins = data["bins"] | ||
prediction = np.zeros(len(bins)) | ||
for i, bin in enumerate(bins): | ||
prediction[i] = ( | ||
bin["y"]["mid"] | ||
* (2 - bin["y"]["mid"]) | ||
/ (bin["y"]["mid"] ** 2 + 2 * (1 - bin["y"]["mid"])) | ||
) | ||
prediction[i] = prediction[i] / convolution[i] | ||
|
||
return prediction | ||
|
||
|
||
def save_data( | ||
data: np.ndarray, | ||
dataset_name: str, | ||
author_name: str, | ||
theory_name: str, | ||
output_name: str = "results", | ||
): | ||
""" | ||
Save computed data to a file with metadata. | ||
|
||
Parameters | ||
---------- | ||
data : np.ndarray | ||
Computed data. | ||
dataset_name : str | ||
Name of the dataset. | ||
author_name : str | ||
Name of the author. | ||
theory_name : str | ||
Name of the theory. | ||
output_name : str, optional | ||
Output folder name, default is "results". | ||
""" | ||
strf_data = "" | ||
for i in range(data.shape[0]): | ||
strf_data += f"{data[i]} 0.0\n" | ||
|
||
date = dt.now().date() | ||
string = ( | ||
f"""******************************************************************************** | ||
SetName: {dataset_name} | ||
Author: {author_name} | ||
Date: {date} | ||
CodesUsed: https://github.com/NNPDF/yadism | ||
TheoryInput: {theory_name} | ||
Warnings: D(y)/2xF1 normalization for {dataset_name} | ||
******************************************************************************** | ||
""" | ||
+ strf_data | ||
) | ||
|
||
os.makedirs(output_name, exist_ok=True) | ||
with open(output_name + f"/CF_NRM_{dataset_name}_G1.dat", "w") as file: | ||
file.write(string) | ||
|
||
|
||
# Create an argument parser | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("pdf", help="The name of the PDF dataset of LHAPDF") | ||
parser.add_argument("gpath", help="The folder name of the F1 pineapple grids") | ||
parser.add_argument("data", help="Name of the commondata set") | ||
parser.add_argument("folder", help="The folder name of the commondata set") | ||
parser.add_argument("--author", help="The name of the author", default="A.J. Hasenack") | ||
parser.add_argument( | ||
"--theory", help="The theory used, formatted as 'theory_'+int", default="theory_800" | ||
) | ||
parser.add_argument("--output", help="The name of the output folder", default="results") | ||
args = parser.parse_args() | ||
|
||
# Extract command line arguments | ||
pdf = args.pdf | ||
gpath = args.gpath | ||
data = args.data | ||
folder = args.folder | ||
author = args.author | ||
theory = args.theory | ||
output = args.output | ||
|
||
dataset_name = os.path.splitext( | ||
os.path.splitext(os.path.basename(os.path.normpath(folder)))[0] | ||
)[0] | ||
|
||
# Get predictions and save data | ||
file = get_file(gpath, data, theory) | ||
data = get_prediction(file, pdf, folder) | ||
save_data(data, dataset_name, author, theory, output) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
import lhapdf | ||
import pineappl | ||
import yaml | ||
from glob import glob | ||
from datetime import datetime as dt | ||
import numpy as np | ||
import os | ||
import argparse | ||
from typing import List, Tuple | ||
|
||
|
||
def get_prediction(folder: str) -> np.ndarray: | ||
""" | ||
Get predictions by convoluting a PineAPPL grid with a LHAPDF PDF. | ||
|
||
Parameters | ||
---------- | ||
folder: str | ||
Path to the kinematics.yaml grid file. | ||
pdf_name : str | ||
The name of the LHAPDF dataset. | ||
|
||
Returns | ||
------- | ||
prediction : np.ndarray | ||
Computed predictions. | ||
""" | ||
|
||
with open(folder + "/kinematics.yaml", "r") as file: | ||
data = yaml.safe_load(file) | ||
|
||
bins = data["bins"] | ||
prediction = np.zeros(len(bins)) | ||
for i, bin in enumerate(bins): | ||
prediction[i] = 1 / (2 * bin["x"]["mid"]) | ||
|
||
return prediction | ||
|
||
|
||
def save_data( | ||
data: np.ndarray, | ||
dataset_name: str, | ||
author_name: str, | ||
theory_name: str, | ||
output_name: str = "results", | ||
): | ||
""" | ||
Save computed data to a file with metadata. | ||
|
||
Parameters | ||
---------- | ||
data : np.ndarray | ||
Computed data. | ||
dataset_name : str | ||
Name of the dataset. | ||
author_name : str | ||
Name of the author. | ||
theory_name : str | ||
Name of the theory. | ||
output_name : str, optional | ||
Output folder name, default is "results". | ||
""" | ||
strf_data = "" | ||
for i in range(data.shape[0]): | ||
strf_data += f"{data[i]} 0.0\n" | ||
|
||
date = dt.now().date() | ||
string = ( | ||
f"""******************************************************************************** | ||
SetName: {dataset_name} | ||
Author: {author_name} | ||
Date: {date} | ||
CodesUsed: https://github.com/NNPDF/yadism | ||
TheoryInput: {theory_name} | ||
Warnings: 1/2x normalization for {dataset_name} | ||
******************************************************************************** | ||
""" | ||
+ strf_data | ||
) | ||
|
||
os.makedirs(output_name, exist_ok=True) | ||
with open(output_name + f"/CF_NRM_{dataset_name}_G1.dat", "w") as file: | ||
file.write(string) | ||
|
||
|
||
# Create an argument parser | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("folder", help="The folder name of the commondata set") | ||
parser.add_argument("--author", help="The name of the author", default="A.J. Hasenack") | ||
parser.add_argument( | ||
"--theory", help="The theory used, formatted as 'theory_'+int", default="theory_800" | ||
) | ||
parser.add_argument("--output", help="The name of the output folder", default="results") | ||
args = parser.parse_args() | ||
|
||
# Extract command line arguments | ||
folder_name = args.folder | ||
author = args.author | ||
theory = args.theory | ||
output = args.output | ||
|
||
dataset_name = os.path.splitext( | ||
os.path.splitext(os.path.basename(os.path.normpath(folder_name)))[0] | ||
)[0] | ||
|
||
# Get predictions and save data | ||
data = get_prediction(folder_name) | ||
save_data(data, dataset_name, author, theory, output) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@toonhasenack Here we are missing the$1/(2xF_1)$ factor.