Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
vardaan123 committed Jan 11, 2024
1 parent 3a91ce1 commit c81ba58
Showing 1 changed file with 7 additions and 2 deletions.
9 changes: 7 additions & 2 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ <h1 class="title is-1 publication-title">Bringing Back the Context: Camera Trap
<a href="https://sites.google.com/view/wei-lun-harry-chao" target="_blank">Wei-Lun Chao</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://ysu1989.github.io/" target="_blank">Yu Su</a><sup>1</sup>,
<a href="https://ysu1989.github.io/" target="_blank">Yu Su</a><sup>1</sup>
</span>
</div>

Expand Down Expand Up @@ -211,6 +211,7 @@ <h2 class="title is-3">Overall Results</h2>
<p>
<b>Species Classification results on iWildCam2020-WILDS (OOD) dataset</b>. The first baseline in the second section shows the
no-context baseline that uses only image-species labels as KG edges. All models use a pre-trained ResNet-50 as image encoder. Parentheses show standard deviation across 3 random seeds. Missing values are denoted by –.

</p>
</div>
</div>
Expand All @@ -230,6 +231,10 @@ <h2 class="title is-3">Overall Results</h2>
<p>
<b>Species Classification results on Snapshot Mountain Zebra dataset.</b>
</p>

<br> <br>

<b>Key Takeaways:</b> The addition of one or more contexts results in a performance gain over the no-context baseline in the vast majority of cases. Furthermore, the use of multiple contexts results in a performance boost in a majority of cases.
</div>
</div>
</div>
Expand Down Expand Up @@ -272,7 +277,7 @@ <h2 class="title is-3">Taxonomy-aware model results in more plausible prediction
<div class="item">
<img src="static/images/taxonomy_analysis.png" alt="Taxonomy-aware model results in more plausible predictions" />
<h2 class="subtitle">
<b>(a):</b> Comparison of COSMO model with and without taxonomy edges. The use of taxonomy information helps the model to avoid semantically implausible predictions.
<b>(a):</b> Comparison of COSMO model with and without taxonomy edges. The use of taxonomy information helps the model to avoid semantically implausible predictions.<br>
<b>(b):</b> Quantitative evaluation of COSMO errors with and without taxonomy using a hierarchical distance metric (iWildCam2020-WILDS). The taxonomy-aware model achieves better performance in terms of Avg. LCA height.
</h2>

Expand Down

0 comments on commit c81ba58

Please sign in to comment.