Skip to content

Commit

Permalink
Merge pull request #3 from PyryL/week4
Browse files Browse the repository at this point in the history
Week4
  • Loading branch information
PyryL authored Nov 25, 2023
2 parents 39804e1 + d659b3d commit 0c5b3b0
Show file tree
Hide file tree
Showing 24 changed files with 263 additions and 146 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,4 @@ Implementation of [CRYSTALS-Kyber](https://pq-crystals.org/kyber/index.shtml) en
* [Week 1](docs/week-1.md)
* [Week 2](docs/week-2.md)
* [Week 3](docs/week-3.md)
* [Week 4](docs/week-4.md)
6 changes: 6 additions & 0 deletions docs/tests.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,3 +53,9 @@ TOTAL 331 0 92 0 100%
```

For more detailed report, run `poetry run invoke coverage-report` and then open `htmlcov/index.html`.

## Performance tests

The asymmetric encryption part of Kyber (CPAPKE in the specification document) only works with fixed-lengthed input, but we can split larger payload into 32-byte chunks and encrypt them separately. Ciphertexts can be concatenated and the whole process can be reversed during decryption. Using this method, encryption is tested with about 10 kibibytes of random payload.

Performance tests can be run with `poetry run invoke performance`.
8 changes: 8 additions & 0 deletions docs/usage.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,14 @@ poetry run invoke coverage-report

after which the report will appear at `htmlcov/index.html`.

### Performance tests

Run performance tests with

```
poetry run invoke performance
```

### Lint

Run static style cheking with
Expand Down
7 changes: 7 additions & 0 deletions docs/week-4.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# Week 4

_20. – 26.11.2023_

This week I started implementing own data structures. First, I added `PolynomialRing` which, as the name tells, represents polynomial ring structure and handles its core calculations. My original plan was also to implement matrix structure, but it turned out to be much slower than Numpy array, and therefore will not be added. I also added more unit tests and started adding performance tests.

Total working time: 5 hours
10 changes: 5 additions & 5 deletions kyber/ccakem.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def ccakem_generate_keys() -> tuple[bytes, bytes]:
pk # public key
)

def ccakem_encrypt(public_key: bytes) -> tuple[bytes, bytes]:
def ccakem_encrypt(public_key: bytes, shared_secret_length: int = 32) -> tuple[bytes, bytes]:
"""
Takes public key as input and returns (ciphertext, shered_secret) as a tuple.
Shared secret is 32 bytes in length.
Expand All @@ -33,14 +33,14 @@ def ccakem_encrypt(public_key: bytes) -> tuple[bytes, bytes]:
Kr = G(m + H(public_key))
K, r = Kr[:32], Kr[32:]
c = Encrypt(public_key, m, r).encrypt()
K = kdf(K + H(c), 32)
K = kdf(K + H(c), shared_secret_length)

return (
c, # ciphertext
K # shared secret
)

def ccakem_decrypt(ciphertext: bytes, private_key: bytes) -> bytes:
def ccakem_decrypt(ciphertext: bytes, private_key: bytes, shared_secret_length: int = 32) -> bytes:
"""
Decrypts the given ciphertext with the private key.
:returns Decrypted 32-byte shared secret.
Expand All @@ -62,5 +62,5 @@ def ccakem_decrypt(ciphertext: bytes, private_key: bytes) -> bytes:
c = Encrypt(pk, m, r).encrypt()

if c == ciphertext:
return kdf(K + H(c), 32)
return kdf(z + H(c), 32)
return kdf(K + H(c), shared_secret_length)
return kdf(z + H(c), shared_secret_length)
6 changes: 2 additions & 4 deletions kyber/encryption/decrypt.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
import numpy as np
from numpy.polynomial.polynomial import Polynomial
from kyber.utils.compression import compress, decompress
from kyber.utils.encoding import encode, decode
from kyber.utils.modulo import polmod
from kyber.constants import n, k, du, dv
from kyber.entities.polring import PolynomialRing

class Decrypt:
def __init__(self, private_key, ciphertext) -> None:
Expand All @@ -30,8 +29,7 @@ def decrypt(self) -> bytes:
u = np.array([decompress(pol, du) for pol in u])
v = decompress(v, dv)

m: Polynomial = v - np.matmul(s.T, u)
m = polmod(m)
m: PolynomialRing = v - np.matmul(s.T, u)
m: bytes = encode(compress([m], 1), 1)

assert len(m) == 32
Expand Down
15 changes: 4 additions & 11 deletions kyber/encryption/encrypt.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,14 @@
from random import randbytes
import numpy as np
from numpy.polynomial.polynomial import Polynomial
from kyber.utils.cbd import cbd
from kyber.utils.pseudo_random import prf
from kyber.utils.modulo import matmod, polmod
from kyber.utils.compression import compress, decompress
from kyber.utils.encoding import encode, decode
from kyber.constants import k, eta1, eta2, n, du, dv
from kyber.utils.byte_conversion import int_to_bytes
from kyber.utils.parse import parse
from kyber.utils.pseudo_random import xof
from kyber.entities.polring import PolynomialRing

class Encrypt:
def __init__(self, public_key: bytes, m: bytes = None, r: bytes = None) -> None:
Expand Down Expand Up @@ -38,33 +37,27 @@ def encrypt(self):
t, rho = self._pk[:-32], self._pk[-32:]
t = np.array(decode(t, 12))

A = np.empty((k, k), Polynomial)
A = np.empty((k, k), PolynomialRing)
for i in range(k):
for j in range(k):
A[i][j] = parse(xof(rho, int_to_bytes(i), int_to_bytes(j)))

N = 0
r = np.empty((k, ), Polynomial)
r = np.empty((k, ), PolynomialRing)
for i in range(k):
r[i] = cbd(prf(rb, int_to_bytes(N)), eta1)
r[i] = polmod(r[i])
N += 1

e1 = np.empty((k, ), Polynomial)
e1 = np.empty((k, ), PolynomialRing)
for i in range(k):
e1[i] = cbd(prf(rb, int_to_bytes(N)), eta2)
e1[i] = polmod(e1[i])
N += 1

e2 = cbd(prf(rb, int_to_bytes(N)), eta2)
e2 = polmod(e2)

u = np.matmul(A.T, r) + e1
v = np.matmul(t.T, r) + e2 + decompress(decode(m, 1)[0], 1)

u = matmod(u)
v = polmod(v)

u = compress(u, du)
v = compress([v], dv)

Expand Down
12 changes: 4 additions & 8 deletions kyber/encryption/keygen.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,12 @@
from random import randbytes
import numpy as np
from numpy.polynomial.polynomial import Polynomial
from kyber.constants import k, eta1
from kyber.utils.pseudo_random import prf, G, xof
from kyber.utils.cbd import cbd
from kyber.utils.modulo import matmod, polmod
from kyber.utils.byte_conversion import int_to_bytes
from kyber.utils.encoding import encode
from kyber.utils.parse import parse
from kyber.entities.polring import PolynomialRing

def generate_keys() -> tuple:
"""
Expand All @@ -18,26 +17,23 @@ def generate_keys() -> tuple:
d = randbytes(32)
rho, sigma = G(d)[:32], G(d)[32:]

A = np.empty((k, k), Polynomial)
A = np.empty((k, k), PolynomialRing)
for i in range(k):
for j in range(k):
A[i][j] = parse(xof(rho, int_to_bytes(i), int_to_bytes(j)))

N = 0
s = np.empty((k, ), Polynomial)
s = np.empty((k, ), PolynomialRing)
for i in range(k):
s[i] = cbd(prf(sigma, int_to_bytes(N)), eta1)
s[i] = polmod(s[i])
N += 1

e = np.empty((k, ), Polynomial)
e = np.empty((k, ), PolynomialRing)
for i in range(k):
e[i] = cbd(prf(sigma, int_to_bytes(N)), eta1)
e[i] = polmod(e[i])
N += 1

t = np.matmul(A, s) + e # t is a polynomial matrix with shape (k, )
t = matmod(t)

s: bytes = encode(s, 12)
t: bytes = encode(t, 12)
Expand Down
72 changes: 72 additions & 0 deletions kyber/entities/polring.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
from kyber.constants import q, n

class PolynomialRing:
def __init__(self, coefs: list[int], check_limits: bool = True) -> None:
"""
:param coefs: Coefficients of the polynomial. E.g. `[1, 2, 3]` represents `1+2x+3x^2`.
:param check_limits: Set to `False` if coefs is already taken to modulo.
"""
self._coefs = [int(c) for c in coefs]
if check_limits:
self._apply_limits()

@property
def coefs(self) -> list[int]:
"""Coefficients of the polynomial. E.g. `[1, 2, 3]` represents `1+2x+3x^2`."""
return self._coefs

def _apply_limits(self) -> None:
"""Take this polynomial to modulo `x^n+1` and coefs to modulo `q`."""
# apply degree limit by dividing self by x^n+1
self._apply_polynomial_modulo_limit()

# apply coef limit
self._coefs = [c % q for c in self._coefs]

# remove trailing zero coefficients
while len(self._coefs) > 0 and self._coefs[-1] == 0:
self._coefs.pop()

def _apply_polynomial_modulo_limit(self) -> None:
"""Replaces `self._coefs` with the remainder of division `self._coefs / (x^n+1)`."""
# this is an optimal version of polynomial long division
coef_count = len(self._coefs)
while coef_count >= n+1:
self._coefs[-n-1] -= self._coefs[-1]
self._coefs[-1] = 0
while self._coefs[-1] == 0:
self._coefs.pop()
coef_count -= 1

def __add__(self, other: "PolynomialRing") -> "PolynomialRing":
result = []
self_length = len(self._coefs)
other_length = len(other.coefs)
for i in range(max(self_length, other_length)):
self_coef = self.coefs[i] if i < self_length else 0
other_coef = other.coefs[i] if i < other_length else 0
result.append(self_coef + other_coef)
return PolynomialRing(result)

def __sub__(self, other: "PolynomialRing") -> "PolynomialRing":
result = []
self_length = len(self._coefs)
other_length = len(other.coefs)
for i in range(max(self_length, other_length)):
self_coef = self.coefs[i] if i < self_length else 0
other_coef = other.coefs[i] if i < other_length else 0
result.append(self_coef - other_coef)
return PolynomialRing(result)

def __mul__(self, other: "PolynomialRing") -> "PolynomialRing":
result = [0 for _ in range(len(self.coefs) + len(other.coefs) - 1)]
for a in range(len(self.coefs)):
for b in range(len(other.coefs)):
result[a+b] += self.coefs[a] * other.coefs[b]
return PolynomialRing(result)

def __eq__(self, other: "PolynomialRing") -> bool:
return self.coefs == other.coefs

def __repr__(self) -> str:
return "PolRing(" + ", ".join([str(c) for c in self.coefs]) + ")"
6 changes: 3 additions & 3 deletions kyber/utils/cbd.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from numpy.polynomial.polynomial import Polynomial
from kyber.utils.byte_conversion import bytes_to_bits
from kyber.entities.polring import PolynomialRing

def cbd(b: bytes, eta: int) -> Polynomial:
def cbd(b: bytes, eta: int) -> PolynomialRing:
"""
Deterministically creates and returns a polynomial (degree 255)
from the given byte array (length 64*eta).
Expand All @@ -20,4 +20,4 @@ def cbd(b: bytes, eta: int) -> Polynomial:
b += bits[2 * i * eta + eta + j]
f.append(a-b)
assert len(f) == 256
return Polynomial(f)
return PolynomialRing(f)
12 changes: 6 additions & 6 deletions kyber/utils/compression.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,25 @@
from math import log2, ceil
from numpy.polynomial.polynomial import Polynomial
from kyber.constants import q
from kyber.utils.round import normal_round
from kyber.entities.polring import PolynomialRing

def compress(pols: list[Polynomial], d: int) -> list[Polynomial]:
def compress(pols: list[PolynomialRing], d: int) -> list[PolynomialRing]:
"""
Reduces every coefficient of every polynomial in the given list
to range `0...2**d-1` (inclusive).
"""
result = []
for pol in pols:
f = [compress_int(c, d) for c in pol.coef]
result.append(Polynomial(f))
f = [compress_int(c, d) for c in pol.coefs]
result.append(PolynomialRing(f))
return result

def decompress(pol: Polynomial, d: int) -> Polynomial:
def decompress(pol: PolynomialRing, d: int) -> PolynomialRing:
"""
Multiplies each coefficient of the given polynomial by `q/(2**d)`.
Each coefficient of the given polynomial must be in range `0...2^d-1` (inclusive).
"""
return Polynomial([decompress_int(c, d) for c in pol.coef])
return PolynomialRing([decompress_int(c, d) for c in pol.coefs])

def compress_int(x: int, d: int) -> int:
"""
Expand Down
12 changes: 5 additions & 7 deletions kyber/utils/encoding.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
import numpy as np
from numpy.polynomial.polynomial import Polynomial
from kyber.utils.byte_conversion import bytes_to_bits, bits_to_bytes
from kyber.entities.polring import PolynomialRing

def encode(pols: list[Polynomial], l: int) -> bytes:
def encode(pols: list[PolynomialRing], l: int) -> bytes:
"""
Converts the given polynomial (degree 255, each coefficient in range `0...2**l-1` inclusive)
into a byte array of lenght `32*l`.
Expand All @@ -12,9 +12,7 @@ def encode(pols: list[Polynomial], l: int) -> bytes:

result = bytearray()
for pol in pols:
if len(pol.coef) > 256:
raise ValueError("too high polynomial degree")
f = list(pol.coef) + [0 for _ in range(256-len(pol.coef))]
f = list(pol.coefs) + [0 for _ in range(256-len(pol.coefs))]
bits = np.empty((256*l, ))
for i in range(256):
f_item = f[i]
Expand All @@ -32,7 +30,7 @@ def encode(pols: list[Polynomial], l: int) -> bytes:
assert len(result) == 32*l*len(pols)
return bytes(result)

def decode(b: bytes, l: int) -> list[Polynomial]:
def decode(b: bytes, l: int) -> list[PolynomialRing]:
"""
Converts the given byte array (length `32*l*x` for some integer x) into
a list of polynomials (length x, each degree 255)
Expand All @@ -48,5 +46,5 @@ def decode(b: bytes, l: int) -> list[Polynomial]:
for i in range(256):
f[i] = sum(bits[i*l+j]*2**j for j in range(l)) # accesses each bit exactly once
assert 0 <= f[i] and f[i] <= 2**l-1
result.append(Polynomial(f))
result.append(PolynomialRing(f))
return result
44 changes: 0 additions & 44 deletions kyber/utils/modulo.py

This file was deleted.

Loading

0 comments on commit 0c5b3b0

Please sign in to comment.