Skip to content

ReichtumQian/ParamKoopmanDL

Repository files navigation

Pytorch implementation of EDMDDL [1] and learning parametric Koopman decomposition [2]. Comprehensive documentation can be found here, examples can be found in the example folder.

Quick Start

We highly recommend using Anaconda to manage the environment. If you have it installed, you can simply run:

git clone https://github.com/ReichtumQian/ParamKoopmanDL.git
cd ParamKoopmanDL
# Create a new environment
conda create -n KoopmanDL python=3.8
conda activate KoopmanDL
# By default using CPU
pip install -r requirements.txt

References

[1] Li, Q., Dietrich, F., Bollt, E. M., & Kevrekidis, I. G. (2017). Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10), 103111.

[2] Guo, Yue, Milan Korda, Ioannis G. Kevrekidis, and Qianxiao Li. "Learning Parametric Koopman Decompositions for Prediction and Control." arXiv preprint arXiv:2310.01124 (2023).

About

Implementation of EDMD, EDMDDL and learning parametric Koopman decomposition.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published