Skip to content

Commit

Permalink
docs: use BFGS with BackTracking for param estimation with PDEs tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
sathvikbhagavan committed Mar 12, 2024
1 parent cd20e61 commit 6190bf5
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions docs/src/tutorials/param_estim.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ We start by defining the problem,

```@example param_estim
using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL, OrdinaryDiffEq,
Plots
Plots, LineSearches
using ModelingToolkit: Interval, infimum, supremum
@parameters t, σ_, β, ρ
@variables x(..), y(..), z(..)
Expand Down Expand Up @@ -94,7 +94,7 @@ Then finally defining and optimizing using the `PhysicsInformedNN` interface.

```@example param_estim
discretization = NeuralPDE.PhysicsInformedNN([chain1, chain2, chain3],
NeuralPDE.QuadratureTraining(), param_estim = true,
NeuralPDE.QuadratureTraining(; abstol = 1e-6, reltol = 1e-6, batch = 200), param_estim = true,
additional_loss = additional_loss)
@named pde_system = PDESystem(eqs, bcs, domains, [t], [x(t), y(t), z(t)], [σ_, ρ, β],
defaults = Dict([p .=> 1.0 for p in [σ_, ρ, β]]))
Expand All @@ -103,7 +103,7 @@ callback = function (p, l)
println("Current loss is: $l")
return false
end
res = Optimization.solve(prob, BFGS(); callback = callback, maxiters = 1000)
res = Optimization.solve(prob, BFGS(linesearch = BackTracking()); callback = callback, maxiters = 1000)
p_ = res.u[(end - 2):end] # p_ = [9.93, 28.002, 2.667]
```

Expand Down

0 comments on commit 6190bf5

Please sign in to comment.