Skip to content

Commit

Permalink
refactor: update DGM implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
avik-pal committed Oct 13, 2024
1 parent 8a0b1d3 commit ce2522a
Show file tree
Hide file tree
Showing 6 changed files with 67 additions and 90 deletions.
3 changes: 2 additions & 1 deletion .JuliaFormatter.toml
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
style = "sciml"
format_markdown = true
format_markdown = true
annotate_untyped_fields_with_any = false
5 changes: 5 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
ArrayInterface = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
ConcreteStructs = "2569d6c7-a4a2-43d3-a901-331e8e4be471"
Cubature = "667455a9-e2ce-5579-9412-b964f529a492"
DiffEqNoiseProcess = "77a26b50-5914-5dd7-bc55-306e6241c503"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Expand All @@ -20,6 +21,7 @@ Integrals = "de52edbc-65ea-441a-8357-d3a637375a31"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogDensityProblems = "6fdf6af0-433a-55f7-b3ed-c6c6e0b8df7c"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
LuxCore = "bb33d45b-7691-41d6-9220-0943567d0623"
MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d"
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
MonteCarloMeasurements = "0987c9cc-fe09-11e8-30f0-b96dd679fdca"
Expand All @@ -35,6 +37,7 @@ Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
UnPack = "3a884ed6-31ef-47d7-9d2a-63182c4928ed"
WeightInitializers = "d49dbf32-c5c2-4618-8acc-27bb2598ef2d"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
Expand All @@ -45,6 +48,7 @@ ArrayInterface = "7.11"
CUDA = "5.5.2"
ChainRulesCore = "1.24"
ComponentArrays = "0.15.16"
ConcreteStructs = "0.2.3"
Cubature = "1.5"
DiffEqNoiseProcess = "5.20"
Distributions = "0.25.107"
Expand Down Expand Up @@ -81,6 +85,7 @@ SymbolicUtils = "3.7"
Symbolics = "6.14"
Test = "1.10"
UnPack = "1"
WeightInitializers = "1.0.3"
Zygote = "0.6.71"
julia = "1.10"

Expand Down
9 changes: 8 additions & 1 deletion src/NeuralPDE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,16 @@ using DomainSets: Domain, ClosedInterval, AbstractInterval, leftendpoint, righte
ProductDomain
using SciMLBase: @add_kwonly, parameterless_type
using UnPack: @unpack
import ChainRulesCore, Lux, ComponentArrays
import ChainRulesCore, ComponentArrays
using Lux: FromFluxAdaptor, recursive_eltype

using ChainRulesCore: @non_differentiable
using ConcreteStructs: @concrete
using Lux: Lux, Chain, Dense, SkipConnection
using LuxCore: AbstractLuxLayer, AbstractLuxWrapperLayer, AbstractLuxContainerLayer
using WeightInitializers: glorot_uniform, zeros32

import LuxCore: initialparameters, initialstates, parameterlength, statelength

RuntimeGeneratedFunctions.init(@__MODULE__)

Expand Down
128 changes: 46 additions & 82 deletions src/dgm.jl
Original file line number Diff line number Diff line change
@@ -1,22 +1,19 @@
struct dgm_lstm_layer{F1, F2} <: Lux.AbstractLuxLayer
activation1::Function
activation2::Function
@concrete struct DGMLSTMLayer <: AbstractLuxLayer
activation1
activation2
in_dims::Int
out_dims::Int
init_weight::F1
init_bias::F2
init_weight
init_bias
end

function dgm_lstm_layer(in_dims::Int, out_dims::Int, activation1, activation2;
init_weight = Lux.glorot_uniform, init_bias = Lux.zeros32)
return dgm_lstm_layer{typeof(init_weight), typeof(init_bias)}(
activation1, activation2, in_dims, out_dims, init_weight, init_bias)
function DGMLSTMLayer(in_dims::Int, out_dims::Int, activation1, activation2;
init_weight = glorot_uniform, init_bias = zeros32)
return DGMLSTMLayer(activation1, activation2, in_dims, out_dims, init_weight, init_bias)
end

import Lux: initialparameters, initialstates, parameterlength, statelength

function Lux.initialparameters(rng::AbstractRNG, l::dgm_lstm_layer)
return (
function initialparameters(rng::AbstractRNG, l::DGMLSTMLayer)
return (;
Uz = l.init_weight(rng, l.out_dims, l.in_dims),
Ug = l.init_weight(rng, l.out_dims, l.in_dims),
Ur = l.init_weight(rng, l.out_dims, l.in_dims),
Expand All @@ -32,75 +29,43 @@ function Lux.initialparameters(rng::AbstractRNG, l::dgm_lstm_layer)
)
end

Lux.initialstates(::AbstractRNG, ::dgm_lstm_layer) = NamedTuple()
function Lux.parameterlength(l::dgm_lstm_layer)
4 * (l.out_dims * l.in_dims + l.out_dims * l.out_dims + l.out_dims)
end
Lux.statelength(l::dgm_lstm_layer) = 0

function (layer::dgm_lstm_layer)(
S::AbstractVecOrMat{T}, x::AbstractVecOrMat{T}, ps, st::NamedTuple) where {T}
@unpack Uz, Ug, Ur, Uh, Wz, Wg, Wr, Wh, bz, bg, br, bh = ps
Z = layer.activation1.(Uz * x + Wz * S .+ bz)
G = layer.activation1.(Ug * x + Wg * S .+ bg)
R = layer.activation1.(Ur * x + Wr * S .+ br)
H = layer.activation2.(Uh * x + Wh * (S .* R) .+ bh)
S_new = (1.0 .- G) .* H .+ Z .* S
return S_new, st
end

struct dgm_lstm_block{L <: NamedTuple} <: Lux.AbstractLuxContainerLayer{(:layers,)}
layers::L
end

function dgm_lstm_block(l...)
names = ntuple(i -> Symbol("dgm_lstm_$i"), length(l))
layers = NamedTuple{names}(l)
return dgm_lstm_block(layers)
function parameterlength(l::DGMLSTMLayer)
return 4 * (l.out_dims * l.in_dims + l.out_dims * l.out_dims + l.out_dims)
end

dgm_lstm_block(xs::AbstractVector) = dgm_lstm_block(xs...)

@generated function apply_dgm_lstm_block(layers::NamedTuple{fields}, S::AbstractVecOrMat,
x::AbstractVecOrMat, ps, st::NamedTuple) where {fields}
N = length(fields)
S_symbols = vcat([:S], [gensym() for _ in 1:N])
x_symbol = :x
st_symbols = [gensym() for _ in 1:N]
calls = [:(($(S_symbols[i + 1]), $(st_symbols[i])) = layers.$(fields[i])(
$(S_symbols[i]), $(x_symbol), ps.$(fields[i]), st.$(fields[i])))
for i in 1:N]
push!(calls, :(st = NamedTuple{$fields}((($(Tuple(st_symbols)...),)))))
push!(calls, :(return $(S_symbols[N + 1]), st))
return Expr(:block, calls...)
end

function (L::dgm_lstm_block)(
S::AbstractVecOrMat{T}, x::AbstractVecOrMat{T}, ps, st::NamedTuple) where {T}
return apply_dgm_lstm_block(L.layers, S, x, ps, st)
# TODO: use more optimized versions from LuxLib
# XXX: Why not use the one from Lux?
function (layer::DGMLSTMLayer)((S, x), ps, st::NamedTuple)
(; Uz, Ug, Ur, Uh, Wz, Wg, Wr, Wh, bz, bg, br, bh) = ps
Z = layer.activation1.(Uz * x .+ Wz * S .+ bz)
G = layer.activation1.(Ug * x .+ Wg * S .+ bg)
R = layer.activation1.(Ur * x .+ Wr * S .+ br)
H = layer.activation2.(Uh * x .+ Wh * (S .* R) .+ bh)
S_new = (1 .- G) .* H .+ Z .* S
return S_new, st
end

struct dgm{S, L, E} <: Lux.AbstractLuxContainerLayer{(:d_start, :lstm, :d_end)}
d_start::S
lstm::L
d_end::E
dgm_lstm_block_rearrange(mx, (S, x)) = (mx, x)

function DGMLSTMBlock(layers...)
blocks = AbstractLuxLayer[]
for (i, layer) in enumerate(layers)
if i == length(layers)
push!(blocks, layer)
else
push!(blocks, SkipConnection(layer, dgm_lstm_block_rearrange))
end
end
return Chain(blocks...)
end

function (l::dgm)(x::AbstractVecOrMat{T}, ps, st::NamedTuple) where {T}
S, st_start = l.d_start(x, ps.d_start, st.d_start)
S, st_lstm = l.lstm(S, x, ps.lstm, st.lstm)
y, st_end = l.d_end(S, ps.d_end, st.d_end)

st_new = (
d_start = st_start,
lstm = st_lstm,
d_end = st_end
)
return y, st_new
@concrete struct DGM <: AbstractLuxWrapperLayer{:model}
model
end

"""
dgm(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1, activation2, out_activation= Lux.identity)
DGM(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1, activation2,
out_activation=identity)
returns the architecture defined for Deep Galerkin method.
Expand All @@ -127,14 +92,13 @@ f(t, x, \\theta) &= \\sigma_{out}(W S^{L+1} + b).
- `out_activation`: activation fn used for the output of the network.
- `kwargs`: additional arguments to be splatted into [`PhysicsInformedNN`](@ref).
"""
function dgm(in_dims::Int, out_dims::Int, modes::Int, layers::Int,
function DGM(in_dims::Int, out_dims::Int, modes::Int, layers::Int,
activation1, activation2, out_activation)
dgm(
Lux.Dense(in_dims, modes, activation1),
dgm_lstm_block([dgm_lstm_layer(in_dims, modes, activation1, activation2)
for i in 1:layers]),
Lux.Dense(modes, out_dims, out_activation)
)
return DGM(Chain(SkipConnection(
Dense(in_dims => modes, activation1; init_bias = zeros32),
DGMLSTMBlock([DGMLSTMLayer(in_dims, modes, activation1, activation2)
for _ in 1:layers]...),
Dense(modes => out_dims, out_activation; init_bias = zeros32))))
end

"""
Expand Down Expand Up @@ -168,8 +132,8 @@ function DeepGalerkin(
in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1::Function,
activation2::Function, out_activation::Function,
strategy::NeuralPDE.AbstractTrainingStrategy; kwargs...)
PhysicsInformedNN(
dgm(in_dims, out_dims, modes, L, activation1, activation2, out_activation),
return PhysicsInformedNN(
DGM(in_dims, out_dims, modes, L, activation1, activation2, out_activation),
strategy; kwargs...
)
end
11 changes: 5 additions & 6 deletions test/dgm_test.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ using NeuralPDE, Test
using ModelingToolkit, Optimization, OptimizationOptimisers, Distributions, MethodOfLines,
OrdinaryDiffEq
import ModelingToolkit: Interval, infimum, supremum
import Lux: tanh, identity

@testset "Poisson's equation" begin
@parameters x y
Expand Down Expand Up @@ -35,9 +34,9 @@ import Lux: tanh, identity
return false
end

res = Optimization.solve(prob, Adam(0.01); callback = callback, maxiters = 500)
res = Optimization.solve(prob, OptimizationOptimisers.Adam(0.01); callback, maxiters = 500)
prob = remake(prob, u0 = res.u)
res = Optimization.solve(prob, Adam(0.001); callback = callback, maxiters = 200)
res = Optimization.solve(prob, OptimizationOptimisers.Adam(0.001); callback, maxiters = 200)
phi = discretization.phi

xs, ys = [infimum(d.domain):0.01:supremum(d.domain) for d in domains]
Expand All @@ -47,7 +46,7 @@ import Lux: tanh, identity
(length(xs), length(ys)))
u_real = reshape([analytic_sol_func(x, y) for x in xs for y in ys],
(length(xs), length(ys)))
@test u_predictu_real atol=0.1
@test u_predictu_real rtol=0.1
end

@testset "Black-Scholes PDE: European Call Option" begin
Expand Down Expand Up @@ -87,9 +86,9 @@ end
return false
end

res = Optimization.solve(prob, Adam(0.1); callback = callback, maxiters = 100)
res = Optimization.solve(prob, Adam(0.1); callback, maxiters = 500)
prob = remake(prob, u0 = res.u)
res = Optimization.solve(prob, Adam(0.01); callback = callback, maxiters = 500)
res = Optimization.solve(prob, Adam(0.01); callback, maxiters = 500)
phi = discretization.phi

function analytical_soln(t, x, K, σ, T)
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ end

@time begin
if GROUP == "All" || GROUP == "QA"
# Failure is due to ModelingToolkit exporting
@time @safetestset "Quality Assurance" include("qa.jl")
end

Expand Down

0 comments on commit ce2522a

Please sign in to comment.