-
-
Notifications
You must be signed in to change notification settings - Fork 83
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Manopt.jl wrapper #712
Changes from 8 commits
136606b
7af2b81
8d7fbb5
3bf8327
7d79171
feb9d0c
bcbc649
051ec6c
80d5671
020c967
5f2edfe
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
name = "OptimizationManopt" | ||
uuid = "e57b7fff-7ee7-4550-b4f0-90e9476e9fb6" | ||
authors = ["Mateusz Baran <[email protected]>"] | ||
version = "0.1.0" | ||
|
||
[deps] | ||
ManifoldDiff = "af67fdf4-a580-4b9f-bbec-742ef357defd" | ||
Manifolds = "1cead3c2-87b3-11e9-0ccd-23c62b72b94e" | ||
ManifoldsBase = "3362f125-f0bb-47a3-aa74-596ffd7ef2fb" | ||
Manopt = "0fc0a36d-df90-57f3-8f93-d78a9fc72bb5" | ||
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba" | ||
Reexport = "189a3867-3050-52da-a836-e630ba90ab69" |
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,307 @@ | ||||||
module OptimizationManopt | ||||||
|
||||||
using Reexport | ||||||
@reexport using Manopt | ||||||
using Optimization, Manopt, ManifoldsBase, ManifoldDiff | ||||||
|
||||||
""" | ||||||
abstract type AbstractManoptOptimizer end | ||||||
|
||||||
A Manopt solver without things specified by a call to `solve` (stopping criteria) and | ||||||
internal state. | ||||||
""" | ||||||
abstract type AbstractManoptOptimizer end | ||||||
|
||||||
function stopping_criterion_to_kwarg(stopping_criterion::Nothing) | ||||||
return NamedTuple() | ||||||
end | ||||||
function stopping_criterion_to_kwarg(stopping_criterion::StoppingCriterion) | ||||||
return (; stopping_criterion = stopping_criterion) | ||||||
end | ||||||
|
||||||
## gradient descent | ||||||
|
||||||
struct GradientDescentOptimizer{ | ||||||
Teval <: AbstractEvaluationType, | ||||||
TM <: AbstractManifold, | ||||||
TLS <: Linesearch | ||||||
} <: AbstractManoptOptimizer | ||||||
M::TM | ||||||
stepsize::TLS | ||||||
end | ||||||
|
||||||
function GradientDescentOptimizer(M::AbstractManifold; | ||||||
eval::AbstractEvaluationType = Manopt.AllocatingEvaluation(), | ||||||
stepsize::Stepsize = ArmijoLinesearch(M)) | ||||||
GradientDescentOptimizer{typeof(eval), typeof(M), typeof(stepsize)}(M, stepsize) | ||||||
end | ||||||
|
||||||
function call_manopt_optimizer(opt::GradientDescentOptimizer{Teval}, | ||||||
loss, | ||||||
gradF, | ||||||
x0, | ||||||
stopping_criterion::Union{Nothing, Manopt.StoppingCriterion}) where { | ||||||
Teval <: | ||||||
AbstractEvaluationType | ||||||
} | ||||||
sckwarg = stopping_criterion_to_kwarg(stopping_criterion) | ||||||
opts = gradient_descent(opt.M, | ||||||
loss, | ||||||
gradF, | ||||||
x0; | ||||||
return_state = true, | ||||||
evaluation = Teval(), | ||||||
stepsize = opt.stepsize, | ||||||
sckwarg...) | ||||||
# we unwrap DebugOptions here | ||||||
minimizer = Manopt.get_solver_result(opts) | ||||||
return (; minimizer = minimizer, minimum = loss(opt.M, minimizer), options = opts), | ||||||
:who_knows | ||||||
end | ||||||
|
||||||
## Nelder-Mead | ||||||
|
||||||
struct NelderMeadOptimizer{ | ||||||
TM <: AbstractManifold, | ||||||
} <: AbstractManoptOptimizer | ||||||
M::TM | ||||||
end | ||||||
|
||||||
function call_manopt_optimizer(opt::NelderMeadOptimizer, | ||||||
loss, | ||||||
gradF, | ||||||
x0, | ||||||
stopping_criterion::Union{Nothing, Manopt.StoppingCriterion}) | ||||||
sckwarg = stopping_criterion_to_kwarg(stopping_criterion) | ||||||
|
||||||
opts = NelderMead(opt.M, | ||||||
loss; | ||||||
return_state = true, | ||||||
sckwarg...) | ||||||
minimizer = Manopt.get_solver_result(opts) | ||||||
return (; minimizer = minimizer, minimum = loss(opt.M, minimizer), options = opts), | ||||||
:who_knows | ||||||
end | ||||||
|
||||||
## conjugate gradient descent | ||||||
|
||||||
struct ConjugateGradientDescentOptimizer{Teval <: AbstractEvaluationType, | ||||||
TM <: AbstractManifold, TLS <: Stepsize} <: | ||||||
AbstractManoptOptimizer | ||||||
M::TM | ||||||
stepsize::TLS | ||||||
end | ||||||
|
||||||
function ConjugateGradientDescentOptimizer(M::AbstractManifold; | ||||||
eval::AbstractEvaluationType = InplaceEvaluation(), | ||||||
stepsize::Stepsize = ArmijoLinesearch(M)) | ||||||
ConjugateGradientDescentOptimizer{typeof(eval), typeof(M), typeof(stepsize)}(M, | ||||||
stepsize) | ||||||
end | ||||||
|
||||||
function call_manopt_optimizer(opt::ConjugateGradientDescentOptimizer{Teval}, | ||||||
loss, | ||||||
gradF, | ||||||
x0, | ||||||
stopping_criterion::Union{Nothing, Manopt.StoppingCriterion}) where { | ||||||
Teval <: | ||||||
AbstractEvaluationType | ||||||
} | ||||||
sckwarg = stopping_criterion_to_kwarg(stopping_criterion) | ||||||
opts = conjugate_gradient_descent(opt.M, | ||||||
loss, | ||||||
gradF, | ||||||
x0; | ||||||
return_state = true, | ||||||
evaluation = Teval(), | ||||||
stepsize = opt.stepsize, | ||||||
sckwarg...) | ||||||
# we unwrap DebugOptions here | ||||||
minimizer = Manopt.get_solver_result(opts) | ||||||
return (; minimizer = minimizer, minimum = loss(opt.M, minimizer), options = opts), | ||||||
:who_knows | ||||||
end | ||||||
|
||||||
## particle swarm | ||||||
|
||||||
struct ParticleSwarmOptimizer{Teval <: AbstractEvaluationType, | ||||||
TM <: AbstractManifold, Tretr <: AbstractRetractionMethod, | ||||||
Tinvretr <: AbstractInverseRetractionMethod, | ||||||
Tvt <: AbstractVectorTransportMethod} <: | ||||||
AbstractManoptOptimizer | ||||||
M::TM | ||||||
retraction_method::Tretr | ||||||
inverse_retraction_method::Tinvretr | ||||||
vector_transport_method::Tvt | ||||||
population_size::Int | ||||||
end | ||||||
|
||||||
function ParticleSwarmOptimizer(M::AbstractManifold; | ||||||
eval::AbstractEvaluationType = InplaceEvaluation(), | ||||||
population_size::Int = 100, | ||||||
retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||||||
inverse_retraction_method::AbstractInverseRetractionMethod = default_inverse_retraction_method(M), | ||||||
vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M)) | ||||||
ParticleSwarmOptimizer{typeof(eval), typeof(M), typeof(retraction_method), | ||||||
typeof(inverse_retraction_method), | ||||||
typeof(vector_transport_method)}(M, | ||||||
retraction_method, | ||||||
inverse_retraction_method, | ||||||
vector_transport_method, | ||||||
population_size) | ||||||
end | ||||||
|
||||||
function call_manopt_optimizer(opt::ParticleSwarmOptimizer{Teval}, | ||||||
loss, | ||||||
gradF, | ||||||
x0, | ||||||
stopping_criterion::Union{Nothing, Manopt.StoppingCriterion}) where { | ||||||
Teval <: | ||||||
AbstractEvaluationType | ||||||
} | ||||||
sckwarg = stopping_criterion_to_kwarg(stopping_criterion) | ||||||
initial_population = vcat([x0], [rand(opt.M) for _ in 1:(opt.population_size - 1)]) | ||||||
opts = particle_swarm(opt.M, | ||||||
loss; | ||||||
x0 = initial_population, | ||||||
n = opt.population_size, | ||||||
return_state = true, | ||||||
retraction_method = opt.retraction_method, | ||||||
inverse_retraction_method = opt.inverse_retraction_method, | ||||||
vector_transport_method = opt.vector_transport_method, | ||||||
sckwarg...) | ||||||
# we unwrap DebugOptions here | ||||||
minimizer = Manopt.get_solver_result(opts) | ||||||
return (; minimizer = minimizer, minimum = loss(opt.M, minimizer), options = opts), | ||||||
:who_knows | ||||||
end | ||||||
|
||||||
## quasi Newton | ||||||
|
||||||
struct QuasiNewtonOptimizer{Teval <: AbstractEvaluationType, | ||||||
TM <: AbstractManifold, Tretr <: AbstractRetractionMethod, | ||||||
Tvt <: AbstractVectorTransportMethod, TLS <: Stepsize} <: | ||||||
AbstractManoptOptimizer | ||||||
M::TM | ||||||
retraction_method::Tretr | ||||||
vector_transport_method::Tvt | ||||||
stepsize::TLS | ||||||
end | ||||||
|
||||||
function QuasiNewtonOptimizer(M::AbstractManifold; | ||||||
eval::AbstractEvaluationType = InplaceEvaluation(), | ||||||
retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||||||
vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M), | ||||||
stepsize = WolfePowellLinesearch(M; | ||||||
retraction_method = retraction_method, | ||||||
vector_transport_method = vector_transport_method, | ||||||
linesearch_stopsize = 1e-12)) | ||||||
QuasiNewtonOptimizer{typeof(eval), typeof(M), typeof(retraction_method), | ||||||
typeof(vector_transport_method), typeof(stepsize)}(M, | ||||||
retraction_method, | ||||||
vector_transport_method, | ||||||
stepsize) | ||||||
end | ||||||
|
||||||
function call_manopt_optimizer(opt::QuasiNewtonOptimizer{Teval}, | ||||||
loss, | ||||||
gradF, | ||||||
x0, | ||||||
stopping_criterion::Union{Nothing, Manopt.StoppingCriterion}) where { | ||||||
Teval <: | ||||||
AbstractEvaluationType | ||||||
} | ||||||
sckwarg = stopping_criterion_to_kwarg(stopping_criterion) | ||||||
opts = quasi_Newton(opt.M, | ||||||
loss, | ||||||
gradF, | ||||||
x0; | ||||||
return_state = true, | ||||||
evaluation = Teval(), | ||||||
retraction_method = opt.retraction_method, | ||||||
vector_transport_method = opt.vector_transport_method, | ||||||
stepsize = opt.stepsize, | ||||||
sckwarg...) | ||||||
# we unwrap DebugOptions here | ||||||
minimizer = Manopt.get_solver_result(opts) | ||||||
return (; minimizer = minimizer, minimum = loss(opt.M, minimizer), options = opts), | ||||||
:who_knows | ||||||
end | ||||||
|
||||||
## Optimization.jl stuff | ||||||
|
||||||
function build_loss(f::OptimizationFunction, prob) | ||||||
function (::AbstractManifold, θ) | ||||||
x = f.f(θ) | ||||||
__x = first(x) | ||||||
return prob.sense === Optimization.MaxSense ? -__x : __x | ||||||
end | ||||||
end | ||||||
|
||||||
function build_gradF(f::OptimizationFunction{true}, prob, cur) | ||||||
function g(M::AbstractManifold, G, θ) | ||||||
f.grad(G, θ, cur...) | ||||||
G .= riemannian_gradient(M, θ, G) | ||||||
end | ||||||
function g(M::AbstractManifold, θ) | ||||||
G = zero(θ) | ||||||
f.grad(G, θ, cur...) | ||||||
return riemannian_gradient(M, θ, G) | ||||||
end | ||||||
end | ||||||
|
||||||
# TODO: | ||||||
# 1) convert tolerances and other stopping criteria | ||||||
# 2) return convergence information | ||||||
# 3) add callbacks to Manopt.jl | ||||||
|
||||||
function SciMLBase.__solve(prob::OptimizationProblem, | ||||||
opt::AbstractManoptOptimizer, | ||||||
data = Optimization.DEFAULT_DATA; | ||||||
callback = (args...) -> (false), | ||||||
maxiters::Union{Number, Nothing} = nothing, | ||||||
maxtime::Union{Number, Nothing} = nothing, | ||||||
abstol::Union{Number, Nothing} = nothing, | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You can translate |
||||||
reltol::Union{Number, Nothing} = nothing, | ||||||
progress = false, | ||||||
kwargs...) | ||||||
local x, cur, state | ||||||
|
||||||
manifold = haskey(prob.kwargs, :manifold) ? prob.kwargs[:manifold] : nothing | ||||||
|
||||||
if manifold === nothing || manifold !== opt.M | ||||||
throw(ArgumentError("Either manifold not specified in the problem `OptimizationProblem(f, x, p; manifold = SymmetricPositiveDefinite(5))` or it doesn't match the manifold specified in the optimizer `$(opt.M)`")) | ||||||
end | ||||||
|
||||||
if data !== Optimization.DEFAULT_DATA | ||||||
maxiters = length(data) | ||||||
end | ||||||
|
||||||
cur, state = iterate(data) | ||||||
|
||||||
stopping_criterion = nothing | ||||||
if maxiters !== nothing | ||||||
stopping_criterion = StopAfterIteration(maxiters) | ||||||
end | ||||||
|
||||||
maxiters = Optimization._check_and_convert_maxiters(maxiters) | ||||||
maxtime = Optimization._check_and_convert_maxtime(maxtime) | ||||||
|
||||||
f = Optimization.instantiate_function(prob.f, prob.u0, prob.f.adtype, prob.p) | ||||||
|
||||||
_loss = build_loss(f, prob) | ||||||
|
||||||
gradF = build_gradF(f, prob, cur) | ||||||
|
||||||
opt_res, opt_ret = call_manopt_optimizer(opt, _loss, gradF, prob.u0, stopping_criterion) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would change this interface for example to
Suggested change
remove the manifold from all optimisers and be happy :) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Oh yeah, good point. Will just remove it. |
||||||
|
||||||
return SciMLBase.build_solution(SciMLBase.DefaultOptimizationCache(prob.f, prob.p), | ||||||
opt, | ||||||
opt_res.minimizer, | ||||||
prob.sense === Optimization.MaxSense ? | ||||||
-opt_res.minimum : opt_res.minimum; | ||||||
original = opt_res.options, | ||||||
retcode = opt_ret) | ||||||
end | ||||||
|
||||||
end # module OptimizationManopt |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You can get the
retcode
by callingThen
asc
is a vector of stopping criteria that triggered. For example if it's a one-element vector with aStopAfterIteration
object, we know that it reached the limit of iterations. If you want a quick "does it look like it converged?" information, you can use