-
Users can run the HPClas.py to identify the Halophilic proteins.
-
featureGenerator.py is implemented for feature generation.
The features descriptors including Amino Acid Composition (AAC), the Composition of K-Spaced Amino Acid Pairs (CKSAAP), Di-Peptide Composition (DPC), Tri-Peptide composition (TPC), and Dipeptide Deviation from Expected Mean (DDE),the Composition(CTDC), Transition(CTDT), Distribution(CTDD), Conjoint Triad (CTriad), Grouped amino acid composition(GAAC), Grouped Di-Peptide Composition(GDPC).
- predicton.py can be used for the final prediction based on the generated features.
- python 3.9
- catboost 1.0.6
- scikit_learn 1.2.1
- train_P.fasta: postives samples for training
- train_N.fasta: negative samples for training
- test_P.fasta: postives samples for testing
- test_N.fasta: negative samples for testing
**The customized file should be consistant with the example files(input/example.fasta)
- Install from Github
git clone https://github.com/Showmake2/HPClas
cd HPClas
- Run the default dataset
python HPClas.py --type benchmark
- Make the prediction for customize data and threshold
python HPClas.py --type predict --fasta_file <Fasta_file> --output_name <output_name> --threshold <threshold>
- output results format | |mean|pred| | :-----------: | :-----------: | :-----------: | |index|pred_prob|final score|