A library for displaying arrays as video in Python.
from displayarray import display import numpy as np arr = np.random.normal(0.5, 0.1, (100, 100, 3)) with display(arr) as d: while d: arr[:] += np.random.normal(0.001, 0.0005, (100, 100, 3)) arr %= 1.0
(Video Source: https://www.youtube.com/watch?v=WgXQ59rg0GM)
from displayarray import display import math as m def forest_color(arr): forest_color.i += 1 arr[..., 0] = (m.sin(forest_color.i*(2*m.pi)*4/360)*255 + arr[..., 0]) % 255 arr[..., 1] = (m.sin((forest_color.i * (2 * m.pi) * 5 + 45) / 360) * 255 + arr[..., 1]) % 255 arr[..., 2] = (m.cos(forest_color.i*(2*m.pi)*3/360)*255 + arr[..., 2]) % 255 forest_color.i = 0 display("fractal test.mp4", callbacks=forest_color, blocking=True, fps_limit=120)
# see test_display_tensorflow in test_simple_apy for full code. ... autoencoder.compile(loss="mse", optimizer="adam") while displayer: grab = tf.convert_to_tensor( displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype(np.float32) / 255.0 ) grab_noise = tf.convert_to_tensor( (((displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype( np.float32) + np.random.uniform(0, 255, grab.shape)) / 2) % 255) / 255.0 ) displayer.update((grab_noise.numpy()[0] * 255.0).astype(np.uint8), "uid for grab noise") autoencoder.fit(grab_noise, grab, steps_per_epoch=1, epochs=1) output_image = autoencoder.predict(grab, steps=1) displayer.update((output_image[0] * 255.0).astype(np.uint8), "uid for autoencoder output")
Mouse events captured whenever the mouse moves over the window:
event:0 x,y:133,387 flags:0 param:None
Code:
from displayarray.input import mouse_loop from displayarray import display @mouse_loop def print_mouse_thread(mouse_event): print(mouse_event) display("fractal test.mp4", blocking=True)
displayarray is distributed on PyPI as a universal wheel in Python 3.6+ and PyPy.
$ pip install displayarray
API has been generated here.
See tests and examples for example usage.
displayarray is distributed under the terms of both
at your option.