-
Source: The dataset is sourced from Kaggle and is titled "Butterfly Image Classification."
-
Objective: The primary goal is to identify the class to which each butterfly image belongs.
-
Dataset Features:
- The dataset includes 75 different classes of butterflies.
- It contains over 1000 labeled images, including validation images.
- Each image belongs to one and only one butterfly category.
-
Label Information: The labels for each image are provided in the "Training_set.csv" file.
-
Dataset Link: You can access the dataset on Kaggle through this link: Butterfly Image Classification Dataset
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_3 (MaxPooling2D) (None, 13, 13, 32) 0
dropout_3 (Dropout) (None, 13, 13, 32) 0
conv2d_5 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_4 (MaxPooling2D) (None, 5, 5, 64) 0
dropout_4 (Dropout) (None, 5, 5, 64) 0
conv2d_6 (Conv2D) (None, 3, 3, 128) 73856
max_pooling2d_5 (MaxPooling2D) (None, 1, 1, 128) 0
dropout_5 (Dropout) (None, 1, 1, 128) 0
flatten_1 (Flatten) (None, 128) 0
dense_2 (Dense) (None, 128) 16512
dense_3 (Dense) (None, 75) 9675
=================================================================
Total params: 118,859 (464.29 KB)
Trainable params: 118,859 (464.29 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_7 (Conv2D) (None, 26, 26, 32) 320
conv2d_8 (Conv2D) (None, 24, 24, 32) 9248
max_pooling2d_6 (MaxPooling2D) (None, 12, 12, 32) 0
conv2d_9 (Conv2D) (None, 10, 10, 64) 18496
conv2d_10 (Conv2D) (None, 8, 8, 64) 36928
conv2d_11 (Conv2D) (None, 6, 6, 64) 36928
max_pooling2d_7 (MaxPooling2D) (None, 3, 3, 64) 0
conv2d_12 (Conv2D) (None, 1, 1, 128) 73856
conv2d_13 (Conv2D) (None, 1, 1, 25) 3225
flatten_2 (Flatten) (None, 25) 0
dense_4 (Dense) (None, 75) 1950
=================================================================
Total params: 180,951 (706.84 KB)
Trainable params: 180,951 (706.84 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_18 (Conv2D) (None, 26, 26, 32) 320
max_pooling2d_12 (MaxPooling2D) (None, 13, 13, 32) 0
dropout_10 (Dropout) (None, 13, 13, 32) 0
conv2d_19 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_13 (MaxPooling2D) (None, 5, 5, 64) 0
dropout_11 (Dropout) (None, 5, 5, 64) 0
flatten_5 (Flatten) (None, 1600) 0
dense_7 (Dense) (None, 75) 120,075
=================================================================
Total params: 138,891 (542.54 KB)
Trainable params: 138,891 (542.54 KB)
Non-trainable params: 0 (0.00 Byte)
The ensemble model is constructed by summing the outputs or predictions of the individual component models, resulting in a combined prediction.
Model | Accuracy Score |
---|---|
Model 1 | 0.24154 |
Model 2 | 0.31077 |
Model 3 | 0.32462 |
Average Ensemble | 0.35769 |