Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

spectrogram and inverse spectrogram #5779

Merged
merged 30 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion .ci/pnnx.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,39 +31,51 @@ jobs:
include:
- torch-version: 1.8.1
torchvision-version: 0.9.1
torchaudio-version: 0.8.1

- torch-version: 1.9.1
torchvision-version: 0.10.1
torchaudio-version: 0.9.1

- torch-version: 1.10.0
torchvision-version: 0.11.1
torchaudio-version: '0.10.0+cpu'

- torch-version: 1.11.0
torchvision-version: 0.12.0
torchaudio-version: '0.11.0+cpu'

- torch-version: 1.12.0
torchvision-version: 0.13.0
torchaudio-version: '0.12.0+cpu'

- torch-version: 1.13.0
torchvision-version: 0.14.0
torchaudio-version: '0.13.0+cpu'

- torch-version: 2.0.0
torchvision-version: 0.15.1
torchaudio-version: '2.0.0+cpu'

- torch-version: 2.1.0
torchvision-version: 0.16.0
torchaudio-version: '2.1.0+cpu'

- torch-version: 2.2.1
torchvision-version: 0.17.1
torchaudio-version: '2.2.1+cpu'

- torch-version: 2.3.0
torchvision-version: 0.18.0
torchaudio-version: '2.3.0+cpu'

- torch-version: 2.4.0
torchvision-version: 0.19.0
torchaudio-version: '2.4.0+cpu'

- torch-version: 2.5.0
torchvision-version: 0.20.0
torchaudio-version: '2.5.0+cpu'

runs-on:
pool-name: docker
Expand Down Expand Up @@ -169,7 +181,7 @@ jobs:
- name: setup-pytorch
run: |
export PYTHONUSERBASE=${{ci.workspace}}/torch-${{matrix.torch-version}}
pip3 install --user torch==${{matrix.torch-version}}+cpu torchvision==${{matrix.torchvision-version}}+cpu --index-url https://download.pytorch.org/whl/cpu
pip3 install --user torch==${{matrix.torch-version}}+cpu torchvision==${{matrix.torchvision-version}}+cpu torchaudio==${{matrix.torchaudio-version}} --index-url https://download.pytorch.org/whl/cpu
pip3 install --user onnx
pip3 install --user onnxscript

Expand Down
51 changes: 51 additions & 0 deletions docs/developer-guide/operators.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@
* [Input](#input)
* [InstanceNorm](#instancenorm)
* [Interp](#interp)
* [InverseSpectrogram](#inversespectrogram)
* [LayerNorm](#layernorm)
* [Log](#log)
* [LRN](#lrn)
Expand Down Expand Up @@ -81,6 +82,7 @@
* [Slice](#slice)
* [Softmax](#softmax)
* [Softplus](#softplus)
* [Spectrogram](#spectrogram)
* [Split](#split)
* [Swish](#swish)
* [TanH](#tanh)
Expand Down Expand Up @@ -1141,6 +1143,30 @@ Resize type:
- 2 = Bilinear
- 3 = Bicubic

# InverseSpectrogram
```
x1 = x as complex
x1 = x1 * sqrt(norm) if normalized
y = istft(x1)
y1 = unpad(y) if center

if returns == 0 return y1 as complex
if returns == 1 return y1 real
if returns == 2 return y1 imag
```

* one_blob_only

| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | n_fft | int | 0 | |
| 1 | returns | int | 1 | |
| 2 | hoplen | int | n_fft / 4 | |
| 3 | winlen | int | n_fft | |
| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming |
| 5 | center | int | 1 | |
| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy |

# LayerNorm
```
split x along outmost axis into part x0, x1 ...
Expand Down Expand Up @@ -1829,6 +1855,31 @@ y = log(exp(x) + 1)
* one_blob_only
* support_inplace

# Spectrogram
```
x1 = pad(x) if center
y = stft(x1)
y = y / sqrt(norm) if normalized

if power == 0 return y as real
if power == 1 return magnitude
if power == 2 return square of magnitude
```

* one_blob_only

| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | n_fft | int | 0 | |
| 1 | power | int | 0 | |
| 2 | hoplen | int | n_fft / 4 | |
| 3 | winlen | int | n_fft | |
| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming |
| 5 | center | int | 1 | |
| 6 | pad_type | int | 2 | 0=CONSTANT 1=REPLICATE 2=REFLECT |
| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy |
| 8 | onesided | int | 1 | |

# Split
```
y0, y1 ... = x
Expand Down
2 changes: 2 additions & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,8 @@ ncnn_add_layer(Diag)
ncnn_add_layer(CELU)
ncnn_add_layer(Shrink)
ncnn_add_layer(RMSNorm)
ncnn_add_layer(Spectrogram)
ncnn_add_layer(InverseSpectrogram)

if(NCNN_VULKAN)
ncnn_add_shader(${CMAKE_CURRENT_SOURCE_DIR}/convert_ycbcr.comp)
Expand Down
238 changes: 238 additions & 0 deletions src/layer/inversespectrogram.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "inversespectrogram.h"

namespace ncnn {

InverseSpectrogram::InverseSpectrogram()
{
one_blob_only = true;
support_inplace = false;
}

int InverseSpectrogram::load_param(const ParamDict& pd)
{
n_fft = pd.get(0, 0);
returns = pd.get(1, 0);
hoplen = pd.get(2, n_fft / 4);
winlen = pd.get(3, n_fft);
window_type = pd.get(4, 0);
center = pd.get(5, 1);
normalized = pd.get(7, 0);

// assert winlen <= n_fft
// generate window
window_data.create(normalized == 2 ? n_fft + 1 : n_fft);
{
float* p = window_data;
for (int i = 0; i < (n_fft - winlen) / 2; i++)
{
*p++ = 0.f;
}
if (window_type == 0)
{
// all ones
for (int i = 0; i < winlen; i++)
{
*p++ = 1.f;
}
}
if (window_type == 1)
{
// hann window
for (int i = 0; i < winlen; i++)
{
*p++ = 0.5f * (1 - cosf(2 * 3.14159265358979323846 * i / winlen));
}
}
if (window_type == 2)
{
// hamming window
for (int i = 0; i < winlen; i++)
{
*p++ = 0.54f - 0.46f * cosf(2 * 3.14159265358979323846 * i / winlen);
}
}
for (int i = 0; i < n_fft - winlen - (n_fft - winlen) / 2; i++)
{
*p++ = 0.f;
}

// pre-calculated window norm factor
if (normalized == 2)
{
float sqsum = 0.f;
for (int i = 0; i < n_fft; i++)
{
sqsum += window_data[i] * window_data[i];
}
window_data[n_fft] = sqrt(sqsum);
}
}

return 0;
}

int InverseSpectrogram::forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt) const
{
// https://github.com/librosa/librosa/blob/main/librosa/core/spectrum.py#L630

// TODO custom window
// TODO output length

const int frames = bottom_blob.h;
const int freqs = bottom_blob.c;
// assert freqs == n_fft or freqs == n_fft / 2 + 1

const int onesided = freqs == n_fft / 2 + 1 ? 1 : 0;

const int outsize = center ? (frames - 1) * hoplen + (n_fft - n_fft / 2 * 2) : (frames - 1) * hoplen + n_fft;

const size_t elemsize = bottom_blob.elemsize;

if (returns == 0)
{
top_blob.create(2, outsize, elemsize, opt.blob_allocator);
}
else
{
top_blob.create(outsize, elemsize, opt.blob_allocator);
}
if (top_blob.empty())
return -100;

Mat window_sumsquare(outsize + n_fft, elemsize, opt.workspace_allocator);
if (window_sumsquare.empty())
return -100;

top_blob.fill(0.f);
window_sumsquare.fill(0.f);

for (int j = 0; j < frames; j++)
{
// collect complex
Mat sp(2, n_fft);
if (onesided == 1)
{
for (int k = 0; k < n_fft / 2 + 1; k++)
{
sp.row(k)[0] = bottom_blob.channel(k).row(j)[0];
sp.row(k)[1] = bottom_blob.channel(k).row(j)[1];
}
for (int k = n_fft / 2 + 1; k < n_fft; k++)
{
sp.row(k)[0] = bottom_blob.channel(n_fft - k).row(j)[0];
sp.row(k)[1] = -bottom_blob.channel(n_fft - k).row(j)[1];
}
}
else
{
for (int k = 0; k < n_fft; k++)
{
sp.row(k)[0] = bottom_blob.channel(k).row(j)[0];
sp.row(k)[1] = bottom_blob.channel(k).row(j)[1];
}
}

if (normalized == 1)
{
float norm = sqrt(n_fft);
for (int i = 0; i < 2 * n_fft; i++)
{
sp[i] *= norm;
}
}
if (normalized == 2)
{
float norm = window_data[n_fft];
for (int i = 0; i < 2 * n_fft; i++)
{
sp[i] *= norm;
}
}

#pragma omp parallel for num_threads(opt.num_threads)
for (int i = 0; i < n_fft; i++)
{
// inverse dft
float re = 0.f;
float im = 0.f;
for (int k = 0; k < n_fft; k++)
{
double angle = 2 * 3.14159265358979323846 * i * k / n_fft;

re += sp.row(k)[0] * cosf(angle) - sp.row(k)[1] * sinf(angle);
im += sp.row(k)[0] * sinf(angle) + sp.row(k)[1] * cosf(angle);
}

re /= n_fft;
im /= n_fft;

// apply window
re *= window_data[i];
im *= window_data[i];

int output_index = j * hoplen + i;
if (center == 1)
{
output_index -= n_fft / 2;
}
if (output_index >= 0 && output_index < outsize)
{
// square window
window_sumsquare[output_index] += window_data[i] * window_data[i];

if (returns == 0)
{
top_blob.row(output_index)[0] += re;
top_blob.row(output_index)[1] += im;
}
if (returns == 1)
{
top_blob[output_index] += re;
}
if (returns == 2)
{
top_blob[output_index] += im;
}
}
}
}

// square window norm
if (returns == 0)
{
for (int i = 0; i < outsize; i++)
{
if (window_sumsquare[i] != 0.f)
{
top_blob.row(i)[0] /= window_sumsquare[i];
top_blob.row(i)[1] /= window_sumsquare[i];
}
}
}
else
{
for (int i = 0; i < outsize; i++)
{
if (window_sumsquare[i] != 0.f)
top_blob[i] /= window_sumsquare[i];
}
}

return 0;
}

} // namespace ncnn
Loading
Loading