Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Part of the motivations for #221 and #222 was so we could add submodels/model-nesting. Well, now we can. Special thanks to @devmotion who reviewed those PRs (several times), improving them significantly, made additional PRs and suggested the current impl of the `@submodel` ❤️ EDIT: We fixed the performance:) This now has zero runtime overhead! See comment-section. EDIT 2: Thanks to @devmotion, we can now alos deal with dynamically specified prefices! - [Motivating example: AR1-prior](#org46a90a5) - [Demos](#org7e05701) - [Can it ever fail?](#org75acb71) - [Benchmarks](#orga99bcf4) <a id="org46a90a5"></a> # Motivating example: AR1-prior ```julia using Turing using DynamicPPL ``` ```julia # Could have made model which samples `num_obs` AR1 samples simulatenously, # but for the sake of showing off dynamic prefixes, we'll only use a vector-implementation. # The matrix implementation will be quite a bit faster too, but oh well. @model function AR1(num_steps, α, μ, σ, ::Type{TV} = Vector{Float64}) where {TV} η ~ MvNormal(num_steps, 1.0) δ = sqrt(1 - α^2) x = TV(undef, num_steps) x[1] = η[1] @inbounds for t = 2:num_steps x[t] = @. α * x[t - 1] + δ * η[t] end return @. μ + σ * x end # Generate an observation σ_obs = 0.1 num_obs = 5 num_steps = 10 ar1 = AR1(num_steps, 0.5, 1.0, 1.0) ys = mapreduce(hcat, 1:num_obs) do i ar1() + σ_obs * randn(num_steps) end ``` 10×5 Matrix{Float64}: 2.30189 0.301618 1.73268 -0.65096 1.46835 2.11187 -1.34878 2.3728 1.02125 3.28422 -0.249064 0.769488 1.34044 3.22175 2.52196 -0.25863 -0.216914 0.528954 3.04756 3.8234 0.372122 0.473511 0.708068 0.76197 0.202003 0.41487 0.759435 1.80162 0.790204 0.12331 1.32585 0.567929 2.74316 1.0874 2.82701 1.84307 1.16138 1.36382 0.735388 1.07423 3.20139 0.75177 1.57236 0.865401 -0.315341 1.22479 1.35688 2.8239 0.597959 0.587955 ```julia @model function demo(y) α ~ Uniform() μ ~ Normal() σ ~ truncated(Normal(), 0, Inf) num_steps = size(y, 1) num_obs = size(y, 2) @inbounds for i = 1:num_obs x = @submodel $(Symbol("ar1_$i")) AR1(num_steps, α, μ, σ) y[:, i] ~ MvNormal(x, 0.1) end end; m = demo(y); vi = VarInfo(m); ``` ```julia keys(vi) ``` 8-element Vector{VarName{sym, Tuple{}} where sym}: α μ σ ar1_1.η ar1_2.η ar1_3.η ar1_4.η ar1_5.η ```julia vi[@varname α] ``` 0.9383208224122919 ```julia chain = sample(m, NUTS(1_000, 0.8), 3_000); ``` ┌ Info: Found initial step size │ ϵ = 0.025 └ @ Turing.Inference /home/tor/.julia/packages/Turing/rHLGJ/src/inference/hmc.jl:188 Sampling: 100%|█████████████████████████████████████████| Time: 0:04:00 ```julia chain[1001:end, [:α, :μ, :σ], :] ``` Chains MCMC chain (2000×3×1 Array{Float64, 3}): Iterations = 1001:3000 Thinning interval = 1 Chains = 1 Samples per chain = 2000 parameters = α, μ, σ internals = Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 α 0.5474 0.1334 0.0030 0.0073 159.6969 0.9995 μ 1.0039 0.2733 0.0061 0.0168 169.9106 1.0134 σ 1.1294 0.1807 0.0040 0.0106 166.8670 0.9998 Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 α 0.2684 0.4625 0.5534 0.6445 0.7861 μ 0.4248 0.8227 1.0241 1.2011 1.4801 σ 0.8781 1.0018 1.0989 1.2239 1.5472 Yay! We recovered the true parameters :tada: ```julia @benchmark $m($vi) ``` BenchmarkTools.Trial: memory estimate: 12.05 KiB allocs estimate: 123 -------------- minimum time: 15.091 μs (0.00% GC) median time: 17.861 μs (0.00% GC) mean time: 19.582 μs (5.23% GC) maximum time: 10.293 ms (99.46% GC) -------------- samples: 10000 evals/sample: 1 <a id="org7e05701"></a> # Demos ```julia using DynamicPPL, Distributions ``` ┌ Info: Precompiling DynamicPPL [366bfd00-2699-11ea-058f-f148b4cae6d8] └ @ Base loading.jl:1317 ```julia @model function demo1(x) x ~ Normal() end; @model function demo2(x, y) @submodel demo1(x) y ~ Uniform() end false; m2 = demo2(missing, missing); vi2 = VarInfo(m2); keys(vi2) ``` 2-element Vector{VarName{sym, Tuple{}} where sym}: x y ```julia println(vi2[VarName(Symbol("x"))]) println(vi2[VarName(Symbol("y"))]) ``` 0.3069117531180063 0.7325324947386318 We can also `observe` without issues: ```julia @model function demo2(x, y) @submodel demo1(x) y ~ Normal(x) end false; m2 = demo2(1000.0, missing); vi2 = VarInfo(m2); keys(vi2) ``` 1-element Vector{VarName{:y, Tuple{}}}: y ```julia vi2[@varname y] ``` 1000.3905079427211 ```julia DynamicPPL.getlogp(vi2) ``` -500001.9141252931 But what if the models have the same variable-names?! "Sure, this is cool and all, but can we even use the values from the nested values in the parent model?" ```julia @model function demo_return(x) x ~ Normal() return x end; @model function demo_useval(x, y) x1 = @submodel sub1 demo_return(x) x2 = @submodel sub2 demo_return(y) z ~ Normal(x1 + x2 + 100, 1.0) end false; vi = VarInfo(demo_useval(missing, missing)); keys(vi) ``` 3-element Vector{VarName{sym, Tuple{}} where sym}: sub1.x sub2.x z ```julia vi[@varname z] ``` 101.09066854862154 And just to prove a point: ```julia @model function nested(x, y) @submodel 1 nested1(x, y) y ~ Uniform() end false; @model function nested1(x, y) @submodel 2 nested2(x, y) y ~ Uniform() end false; @model function nested2(x, y) z = @submodel 3 nested3(x, y) y ~ Normal(z, 1.0) end false; @model function nested3(x, y) x ~ Uniform() y ~ Normal(-100.0, 1.0) return x + 1000 end false; m = nested(missing, missing); vi = VarInfo(m); keys(vi) ``` 5-element Vector{VarName{sym, Tuple{}} where sym}: 1.2.3.x 1.2.3.y 1.2.y 1.y y ```julia vi[VarName(Symbol("1.2.y"))] ``` 1000.5609156083766 ```julia DynamicPPL.getlogp(vi) ``` -4.620040828101227 <a id="org75acb71"></a> # Can it ever fail? Yeah, if the user doesn't provide the prefix, it can: ```julia @model function nested(x, y) @submodel nested1(x, y) y ~ Uniform() end false; @model function nested1(x, y) @submodel nested2(x, y) y ~ Uniform() end false; @model function nested2(x, y) z = @submodel nested3(x, y) y ~ Normal(z, 1.0) end false; @model function nested3(x, y) x ~ Uniform() y ~ Normal(-100.0, 1.0) return x + 1000 end false; m = nested(missing, missing); vi = VarInfo(m); keys(vi) ``` 2-element Vector{VarName{sym, Tuple{}} where sym}: x y ```julia # Inner-most value is recorded (i.e. the first one reached) vi[@varname y] ``` -100.16836599596732 And it messes up the logp computation: ```julia DynamicPPL.getlogp(vi) ``` -Inf But I could imagine there's a way for us to fix this, or at least warn the user when this happens. <a id="orga99bcf4"></a> # Benchmarks At this point you're probably wondering, "but does it have any overhead (at runtime)?". For a "shallow" nestings, nah, but if you go deep enough there seems to be a tiny bit (likely because we're calling the "constructor" for the model): ```julia using BenchmarkTools @model function base(x, y) x ~ Uniform() y ~ Uniform() y1 ~ Uniform() z = x + 1000 y12 ~ Normal() y123 ~ Normal(-100.0, 1.0) end m1 = base(missing, missing); vi1 = VarInfo(m1); ``` ```julia @model function nested_shallow(x, y) @submodel 1 nested1_shallow(x, y) y ~ Uniform() end false; @model function nested1_shallow(x, y) x ~ Uniform() y ~ Uniform() z = x + 1000 y12 ~ Normal() y123 ~ Normal(-100.0, 1.0) end false; m2 = nested_shallow(missing, missing); vi2 = VarInfo(m2); ``` ```julia @model function nested(x, y) @submodel 1 nested1(x, y) y ~ Uniform() end false; @model function nested1(x, y) @submodel 2 nested2(x, y) y ~ Uniform() end false; @model function nested2(x, y) z = @submodel 3 nested3(x, y) y ~ Normal(z, 1.0) end false; @model function nested3(x, y) x ~ Uniform() y ~ Normal(-100.0, 1.0) return x + 1000 end m3 = nested(missing, missing); vi3 = VarInfo(m3); ``` ```julia @model function nested_noprefix(x, y) @submodel nested_noprefix1(x, y) y ~ Uniform() end false; @model function nested_noprefix1(x, y) @submodel nested_noprefix2(x, y) y1 ~ Uniform() end false; @model function nested_noprefix2(x, y) z = @submodel nested_noprefix3(x, y) y2 ~ Normal(z, 1.0) end false; @model function nested_noprefix3(x, y) x ~ Uniform() y3 ~ Normal(-100.0, 1.0) return x + 1000 end m4 = nested_noprefix(missing, missing); vi4 = VarInfo(m4); ``` ```julia keys(vi1) ``` 5-element Vector{VarName{sym, Tuple{}} where sym}: x y y1 y12 y123 ```julia keys(vi2) ``` 5-element Vector{VarName{sym, Tuple{}} where sym}: 1.x 1.y 1.y12 1.y123 y ```julia keys(vi3) ``` 5-element Vector{VarName{sym, Tuple{}} where sym}: 1.2.3.x 1.2.3.y 1.2.y 1.y y ```julia keys(vi4) ``` 5-element Vector{VarName{sym, Tuple{}} where sym}: x y3 y2 y1 y ```julia @benchmark $m1($vi1) ``` BenchmarkTools.Trial: memory estimate: 160 bytes allocs estimate: 5 -------------- minimum time: 1.714 μs (0.00% GC) median time: 1.747 μs (0.00% GC) mean time: 1.835 μs (0.00% GC) maximum time: 6.894 μs (0.00% GC) -------------- samples: 10000 evals/sample: 10 ```julia @benchmark $m2($vi2) ``` BenchmarkTools.Trial: memory estimate: 160 bytes allocs estimate: 5 -------------- minimum time: 1.759 μs (0.00% GC) median time: 1.778 μs (0.00% GC) mean time: 1.819 μs (0.00% GC) maximum time: 5.563 μs (0.00% GC) -------------- samples: 10000 evals/sample: 10 ```julia @benchmark $m3($vi3) ``` BenchmarkTools.Trial: memory estimate: 160 bytes allocs estimate: 5 -------------- minimum time: 1.718 μs (0.00% GC) median time: 1.746 μs (0.00% GC) mean time: 1.787 μs (0.00% GC) maximum time: 5.758 μs (0.00% GC) -------------- samples: 10000 evals/sample: 10 ```julia @benchmark $m4($vi4) ``` BenchmarkTools.Trial: memory estimate: 160 bytes allocs estimate: 5 -------------- minimum time: 1.672 μs (0.00% GC) median time: 1.696 μs (0.00% GC) mean time: 1.756 μs (0.00% GC) maximum time: 4.882 μs (0.00% GC) -------------- samples: 10000 evals/sample: 10 Notice that the number of allocations have increased for the deeply nested model. Seems like the Julia compiler isn't too good at inferring the return-types of Turing-models? This seems to be the case too by looking at the lowered code. I haven't given this too much thought yet btw; likely is a way for us to help the compiler here.
- Loading branch information
0f7548d
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@JuliaRegistrator register
0f7548d
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Registration pull request created: JuliaRegistries/General/36976
After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via: