Skip to content

Commit

Permalink
Updated references to Unity Inference Engine to Sentis. (#5998)
Browse files Browse the repository at this point in the history
  • Loading branch information
miguelalonsojr authored Oct 15, 2023
1 parent f3dc8f6 commit 8b86648
Show file tree
Hide file tree
Showing 12 changed files with 20 additions and 20 deletions.
2 changes: 1 addition & 1 deletion docs/Getting-Started.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ itself to keep the ball balanced on its head.
## Running a pre-trained model

We include pre-trained models for our agents (`.onnx` files) and we use the
[Unity Inference Engine](Unity-Inference-Engine.md) to run these models inside
[Sentis](Sentis.md) to run these models inside
Unity. In this section, we will use the pre-trained model for the 3D Ball
example.

Expand Down
4 changes: 2 additions & 2 deletions docs/ML-Agents-Overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -277,9 +277,9 @@ mode with the **3D Balance Ball** sample environment.
#### Cross-Platform Inference

It is important to note that the ML-Agents Toolkit leverages the
[Unity Inference Engine](Unity-Inference-Engine.md) to run the models within a
[Sentis](Sentis.md) to run the models within a
Unity scene such that an agent can take the _optimal_ action at each step. Given
that the Unity Inference Engine support most platforms that Unity does, this
that Sentis support most platforms that Unity does, this
means that any model you train with the ML-Agents Toolkit can be embedded into
your Unity application that runs on any platform. See our
[dedicated blog post](https://blogs.unity3d.com/2019/03/01/unity-ml-agents-toolkit-v0-7-a-leap-towards-cross-platform-inference/)
Expand Down
2 changes: 1 addition & 1 deletion docs/ML-Agents-Toolkit-Documentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
- [Training Configuration File](Training-Configuration-File.md)
- [Using TensorBoard to Observe Training](Using-Tensorboard.md)
- [Profiling Trainers](Profiling-Python.md)
- [Unity Inference Engine](Unity-Inference-Engine.md)
- [Sentis](Sentis.md)

## Extending ML-Agents

Expand Down
4 changes: 2 additions & 2 deletions docs/Migrating.md
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ Sensors with non-normalized data cannot use PNG compression type.
recieved from `GetObjectData()` will be the observation sent to the trainer.

### LSTM models from previous releases no longer supported
The way the Unity Inference Engine processes LSTM (recurrent neural networks) has changed. As a result, models
The way that Sentis processes LSTM (recurrent neural networks) has changed. As a result, models
trained with previous versions of ML-Agents will not be usable at inference if they were trained with a `memory`
setting in the `.yaml` config file.
If you want to use a model that has a recurrent neural network in this release of ML-Agents, you need to train
Expand Down Expand Up @@ -705,7 +705,7 @@ vector observations to be used simultaneously.
### Important Changes

- We no longer support TFS and are now using the
[Unity Inference Engine](Unity-Inference-Engine.md)
[Sentis](Sentis.md)

#### Steps to Migrate

Expand Down
2 changes: 1 addition & 1 deletion docs/Readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ developer communities.
- Train robust agents using environment randomization
- Flexible agent control with On Demand Decision Making
- Train using multiple concurrent Unity environment instances
- Utilizes the [Unity Inference Engine](Unity-Inference-Engine.md) to
- Utilizes the [Sentis](Sentis.md) to
provide native cross-platform support
- Unity environment [control from Python](Python-LLAPI.md)
- Wrap Unity learning environments as a [gym](Python-Gym-API.md) environment
Expand Down
14 changes: 7 additions & 7 deletions docs/Unity-Inference-Engine.md → docs/Sentis.md
Original file line number Diff line number Diff line change
@@ -1,25 +1,25 @@
# Unity Inference Engine
# Sentis

The ML-Agents Toolkit allows you to use pre-trained neural network models inside
your Unity games. This support is possible thanks to the
[Unity Inference Engine](https://docs.unity3d.com/Packages/com.unity.sentis@latest/index.html)
(codenamed Sentis). The Unity Inference Engine uses
[Sentis](https://docs.unity3d.com/Packages/com.unity.sentis@latest/index.html)
(codenamed Sentis). Sentis uses
[compute shaders](https://docs.unity3d.com/Manual/class-ComputeShader.html) to
run the neural network within Unity.

## Supported devices

See the Unity Inference Engine documentation for a list of the
See the Sentis documentation for a list of the
[supported platforms](https://docs.unity3d.com/Manual/PlatformSpecific.html).

Scripting Backends : The Unity Inference Engine is generally faster with
Scripting Backends : Sentis is generally faster with
**IL2CPP** than with **Mono** for Standalone builds. In the Editor, It is not
possible to use the Unity Inference Engine with GPU device selected when Editor
possible to use Sentis with GPU device selected when Editor
Graphics Emulation is set to **OpenGL(ES) 3.0 or 2.0 emulation**. Also there
might be non-fatal build time errors when target platform includes Graphics API
that does not support **Unity Compute Shaders**.

## Using the Unity Inference Engine
## Using Sentis

When using a model, drag the model file into the **Model** field in the
Inspector of the Agent. Select the **Inference Device** : CPU or GPU you want to
Expand Down
2 changes: 1 addition & 1 deletion docs/Training-ML-Agents.md
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ artifacts), then use the `--force` flag.
You can also use this mode to run inference of an already-trained model in
Python by using both the `--resume` and `--inference` flags. Note that if you
want to run inference in Unity, you should use the
[Unity Inference Engine](Getting-Started.md#running-a-pre-trained-model).
[Sentis](Getting-Started.md#running-a-pre-trained-model).

Additionally, if the network architecture changes, you may still load an existing model,
but ML-Agents will only load the parts of the model it can load and ignore all others. For instance,
Expand Down
2 changes: 1 addition & 1 deletion localized_docs/RU/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ Proximal Policy Optimization (PPO) и Soft Actor-Critic (SAC). Первый ал
- Обучение агента сразу на множестве сцен одновременно. Представьте, как он играет в футбол сразу
на десяти стадионах, набираясь опыта одновременно на них всех. Выглядит это в Unity также,
как и представляется.
- Использование [Unity Inference Engine](docs/Unity-Inference-Engine.md) для поддержки кроссплатформенности.
- Использование [Sentis](docs/Unity-Inference-Engine.md) для поддержки кроссплатформенности.
- Контроль через [Python API](docs/Python-API.md) сцен.
- Возможность обернуть Unity среду для обучения как [gym](gym-unity/README.md).

Expand Down
2 changes: 1 addition & 1 deletion localized_docs/RU/docs/Начало работы.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ float (с плавающей точкой, например, 3.14), которы
## Запуск заранее обученной (предтренированной) модели

Мы включили в свои примеры заранее обученные модели (файлы с расширением `.nn`)
и использовали [Unity Inference Engine](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Unity-Inference-Engine.md),
и использовали [Sentis](https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Unity-Inference-Engine.md),
чтобы запустить их в Unity. В этом разделе мы воспользуемся одной
из таких моделей для 3D Ball.

Expand Down
2 changes: 1 addition & 1 deletion localized_docs/TR/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
- Rastgele ortamlar kullanarak kararlı ajanlar eğitin
- İsteğe Bağlı Karar Verme ile esnek ajan kontrolü
- Birden çok eş zamanlı Unity ortamı örneği kullanarak eğitim
- [Unity Inference Engine](docs/Unity-Inference-Engine.md) desteği
- [Sentis](docs/Unity-Inference-Engine.md) desteği
- [Python API ile](docs/Python-API.md) Unity ortamını kontrol etme
- Unity - [gym](gym-unity/README.md) desteği

Expand Down
2 changes: 1 addition & 1 deletion localized_docs/TR/docs/Getting-Started.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ ML-Agent Toolkit, eylemleri iki türe sınıflandırır: sürekli ve ayrık(cont

## Önceden eğitilmiş modeli çalıştırma

Ajanlarımız (`.nn` dosyaları) için önceden eğitilmiş modeller ortamımıza ekliyoruz ve bu modelleri Unity içinde çalıştırmak için [Unity Inference Engine]([Unity Inference Engine](Unity-Inference-Engine.md)'i kullanıyoruz. Bu bölümde, 3D Ball örneği için önceden eğitilmiş modeli bir sinir ağı kullanacağız.
Ajanlarımız (`.nn` dosyaları) için önceden eğitilmiş modeller ortamımıza ekliyoruz ve bu modelleri Unity içinde çalıştırmak için [Sentis]([Sentis](Unity-Inference-Engine.md)'i kullanıyoruz. Bu bölümde, 3D Ball örneği için önceden eğitilmiş modeli bir sinir ağı kullanacağız.

1. **Project** penceresinde `Assets/ML-Agents/Examples/3DBall/Prefabs` klasörüne gidin. `3DBall`'ın içerisini genişletin ve `Agent` hazır yapısına tıklayın. `Agent` hazır yapısını **Inspector** penceresinde görmelisiniz.

Expand Down
2 changes: 1 addition & 1 deletion localized_docs/TR/docs/Readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
- [Training Configuration File](Training-Configuration-File.md)
- [Using TensorBoard to Observe Training](Using-Tensorboard.md)
- [Profiling Trainers](Profiling-Python.md)
- [Unity Inference Engine](Unity-Inference-Engine.md)
- [Sentis](Unity-Inference-Engine.md)
## Extending ML-Agents
Expand Down

0 comments on commit 8b86648

Please sign in to comment.