Skip to content

Vill-Lab/2023-ICML-DPL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2023-ICML-DPL

This is the pytorch implementation of the paper.

Getting start

python main.py [--dataset DATASET] [--data_dir DATA_DIR] 
               [--net NET] [--batch_size BATCH_SIZE] [--gpu GPU] 
               [--lr LR] [--epoch EPOCH] [--resume] 
               [--alpha ALPHA] [--G_size G_SIZE] [--varepsilon VAREPSILON] [--rep_aug rep_aug]
  • batch size: 128
  • learning rate: 0.1
  • training epoch: 200
  • the hyperparameter $\alpha$: 0.005
  • the size of Guide Set: 5% of the size of training set
  • the hyperparameter $\varepsilon$: 0.04
  • the approaches of replacement and augmentation: augmentation

Citation

@inproceedings{song2023deep,
  title={Deep perturbation learning: enhancing the network performance via image perturbations},
  author={Song, Zifan and Gong, Xiao and Hu, Guosheng and Zhao, Cairong},
  booktitle={International Conference on Machine Learning},
  pages={32273--32287},
  year={2023},
  organization={PMLR}
}