-
Notifications
You must be signed in to change notification settings - Fork 571
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5f5fafd
commit 22d83f0
Showing
7 changed files
with
2,908 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
# Swish https://arxiv.org/pdf/1905.02244.pdf --------------------------------------------------------------------------- | ||
class Swish(nn.Module): # | ||
@staticmethod | ||
def forward(x): | ||
return x * torch.sigmoid(x) | ||
|
||
|
||
class HardSwish(nn.Module): | ||
@staticmethod | ||
def forward(x): | ||
return x * F.hardtanh(x + 3, 0., 6., True) / 6. | ||
|
||
|
||
class MemoryEfficientSwish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x * torch.sigmoid(x) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
return grad_output * (sx * (1 + x * (1 - sx))) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- | ||
class Mish(nn.Module): | ||
@staticmethod | ||
def forward(x): | ||
return x * F.softplus(x).tanh() | ||
|
||
|
||
class MemoryEfficientMish(nn.Module): | ||
class F(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x): | ||
ctx.save_for_backward(x) | ||
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): | ||
x = ctx.saved_tensors[0] | ||
sx = torch.sigmoid(x) | ||
fx = F.softplus(x).tanh() | ||
return grad_output * (fx + x * sx * (1 - fx * fx)) | ||
|
||
def forward(self, x): | ||
return self.F.apply(x) | ||
|
||
|
||
# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- | ||
class FReLU(nn.Module): | ||
def __init__(self, c1, k=3): # ch_in, kernel | ||
super().__init__() | ||
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1) | ||
self.bn = nn.BatchNorm2d(c1) | ||
|
||
def forward(self, x): | ||
return torch.max(x, self.bn(self.conv(x))) |
Oops, something went wrong.