Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
WongKinYiu authored Nov 16, 2020
1 parent 5f5fafd commit 22d83f0
Show file tree
Hide file tree
Showing 7 changed files with 2,908 additions and 0 deletions.
69 changes: 69 additions & 0 deletions utils/activations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
import torch
import torch.nn as nn
import torch.nn.functional as F


# Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
class Swish(nn.Module): #
@staticmethod
def forward(x):
return x * torch.sigmoid(x)


class HardSwish(nn.Module):
@staticmethod
def forward(x):
return x * F.hardtanh(x + 3, 0., 6., True) / 6.


class MemoryEfficientSwish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)

@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
return grad_output * (sx * (1 + x * (1 - sx)))

def forward(self, x):
return self.F.apply(x)


# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):
@staticmethod
def forward(x):
return x * F.softplus(x).tanh()


class MemoryEfficientMish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))

@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))

def forward(self, x):
return self.F.apply(x)


# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):
def __init__(self, c1, k=3): # ch_in, kernel
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
self.bn = nn.BatchNorm2d(c1)

def forward(self, x):
return torch.max(x, self.bn(self.conv(x)))
Loading

0 comments on commit 22d83f0

Please sign in to comment.