Skip to content

Latest commit

 

History

History
36 lines (29 loc) · 1.38 KB

README.md

File metadata and controls

36 lines (29 loc) · 1.38 KB

Cat face detection using MTCNN

results:

  • It doesn't perform well, only for reference

Test an image

  • run > python mtcnn_test.py

Training data prepraring

  • download cat face dataset for landmark, then unzip it into ./data_set/original/
    • run > python ./anno_store/tool/transform.py change train.csv into .txt(anno_train.txt)

Training

  • preparing data for P-Net

    • run > python mtcnn/data_preprocessing/gen_Pnet_train_data.py
    • run > python mtcnn/data_preprocessing/assemble_pnet_imglist.py
  • train P-Net

    • run > python mtcnn/train_net/train_p_net.py
  • preparing data for R-Net

    • run > python mtcnn/data_preprocessing/gen_Rnet_train_data.py (maybe you should change the pnet model path)
    • run > python mtcnn/data_preprocessing/assemble_rnet_imglist.py
  • train R-Net

    • run > python mtcnn/train_net/train_r_net.py
  • preparing data for O-Net

    • run > python mtcnn/data_preprocessing/gen_Onet_train_data.py
    • run > python mtcnn/data_preprocessing/gen_landmark_48.py
    • run > python mtcnn/data_preprocessing/assemble_onet_imglist.py
  • train O-Net

    • run > python mtcnn/train_net/train_o_net.py

Citation

DFace mtcnn-pytorch