- It doesn't perform well, only for reference
- run > python mtcnn_test.py
- download cat face dataset for landmark, then unzip it into ./data_set/original/
- run > python ./anno_store/tool/transform.py change train.csv into .txt(anno_train.txt)
-
preparing data for P-Net
- run > python mtcnn/data_preprocessing/gen_Pnet_train_data.py
- run > python mtcnn/data_preprocessing/assemble_pnet_imglist.py
-
train P-Net
- run > python mtcnn/train_net/train_p_net.py
-
preparing data for R-Net
- run > python mtcnn/data_preprocessing/gen_Rnet_train_data.py (maybe you should change the pnet model path)
- run > python mtcnn/data_preprocessing/assemble_rnet_imglist.py
-
train R-Net
- run > python mtcnn/train_net/train_r_net.py
-
preparing data for O-Net
- run > python mtcnn/data_preprocessing/gen_Onet_train_data.py
- run > python mtcnn/data_preprocessing/gen_landmark_48.py
- run > python mtcnn/data_preprocessing/assemble_onet_imglist.py
-
train O-Net
- run > python mtcnn/train_net/train_o_net.py