Skip to content

ZL-Rong/Fake-Tweets-Classification-With-Diff-DBMS

Repository files navigation

Training BERT-Fake-Tweets-Classification Model with MYSQL, PostgreSQL and Neo4j, and comparing their performance of training process

Required Libraries

  1. conda install -c huggingface transformers
  2. conda install -c pytorch pytorch
  3. conda install -c anaconda flask
  4. conda install -c anaconda jinja2
  5. conda install -c anaconda numpy
  6. conda install -c anaconda mysql-connector-python
  7. conda install -c anaconda psycopg2
  8. pip install neo4j

Training the model

  1. run training_model.py OR
  2. run training_model_db.py

Running the flask server

  1. python app.py
  2. access the local server: http://127.0.0.1:5000/

Acknowledge

  1. Huggingface bert-base-cased: https://huggingface.co/bert-base-cased
  2. Datasets: https://github.com/prathameshmahankal/Fake-News-Detection-Using-BERT/tree/main/data
  3. BERT Paper Reference: https://arxiv.org/abs/1810.04805
  4. Frontend Reference: https://github.com/ac4mm/Fake-Detector

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published