-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
965 additions
and
78 deletions.
There are no files selected for viewing
326 changes: 326 additions & 0 deletions
326
projects/DETR3D/configs/detr3d_mini_r50_bert_gridmask_halfdata_encoder.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,326 @@ | ||
_base_ = [ | ||
# 'mmdet3d::_base_/datasets/nus-3d.py', | ||
'mmdet3d::_base_/default_runtime.py' | ||
] | ||
|
||
custom_imports = dict(imports=['projects.DETR3D.detr3d']) | ||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
voxel_size = [0.2, 0.2, 8] | ||
|
||
img_norm_cfg = dict( | ||
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False) | ||
# For nuScenes we usually do 10-class detection | ||
class_names = [ | ||
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', | ||
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' | ||
] | ||
lang_model_name = 'bert-base-uncased' | ||
input_modality = dict( | ||
use_lidar=False, | ||
use_camera=True, | ||
use_radar=False, | ||
use_map=False, | ||
use_external=False) | ||
# this means type='DETR3D' will be processed as 'mmdet3d.DETR3D' | ||
default_scope = 'mmdet3d' | ||
model = dict( | ||
type='DETR3D', | ||
use_grid_mask=True, | ||
data_preprocessor=dict( | ||
type='Det3DDataPreprocessor', **img_norm_cfg, pad_size_divisor=32), | ||
language_model=dict( | ||
type='BertModel', | ||
name=lang_model_name, | ||
pad_to_max=False, | ||
use_sub_sentence_represent=True, | ||
special_tokens_list=['[CLS]', '[SEP]', '.', '?'], | ||
add_pooling_layer=False, | ||
), | ||
encoder=dict( | ||
num_layers=6, | ||
num_cp=6, | ||
# visual layer config | ||
layer_cfg=dict( | ||
self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), | ||
ffn_cfg=dict( | ||
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), | ||
# text layer config | ||
text_layer_cfg=dict( | ||
self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), | ||
ffn_cfg=dict( | ||
embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), | ||
# fusion layer config | ||
fusion_layer_cfg=dict( | ||
v_dim=256, | ||
l_dim=256, | ||
embed_dim=1024, | ||
num_heads=4, | ||
init_values=1e-4), | ||
), | ||
positional_encoding_single=dict( | ||
num_feats=128, | ||
normalize=True, | ||
temperature=20, | ||
offset=0.0), | ||
img_backbone=dict( | ||
type='mmdet.ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN2d', requires_grad=False), | ||
norm_eval=True, | ||
style='caffe', | ||
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), | ||
stage_with_dcn=(False, False, True, True)), | ||
img_neck=dict( | ||
type='projects.DETR3D.detr3d.LFPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
start_level=1, | ||
add_extra_convs='on_output', | ||
num_outs=4, | ||
language_model=dict( | ||
type='BertModel', | ||
name=lang_model_name, | ||
pad_to_max=False, | ||
use_sub_sentence_represent=True, | ||
special_tokens_list=['[CLS]', '[SEP]', '.', '?'], | ||
add_pooling_layer=False,), | ||
encoder=dict( | ||
num_layers=6, | ||
num_cp=6, | ||
# visual layer config | ||
layer_cfg=dict( | ||
self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), | ||
ffn_cfg=dict( | ||
embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), | ||
# text layer config | ||
text_layer_cfg=dict( | ||
self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), | ||
ffn_cfg=dict( | ||
embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), | ||
# fusion layer config | ||
fusion_layer_cfg=dict( | ||
v_dim=256, | ||
l_dim=256, | ||
embed_dim=1024, | ||
num_heads=4, | ||
init_values=1e-4), | ||
), | ||
positional_encoding_single=dict( | ||
num_feats=128, | ||
normalize=True, | ||
temperature=20, | ||
offset=0.0), | ||
relu_before_extra_convs=True), | ||
pts_bbox_head=dict( | ||
type='DETR3DHead', | ||
num_query=900, | ||
num_classes=10, | ||
in_channels=256, | ||
sync_cls_avg_factor=True, | ||
with_box_refine=True, | ||
as_two_stage=False, | ||
transformer=dict( | ||
type='Detr3DTransformer', | ||
decoder=dict( | ||
type='Detr3DTransformerDecoder', | ||
num_layers=6, | ||
return_intermediate=True, | ||
transformerlayers=dict( | ||
type='mmdet.DetrTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='MultiheadAttention', # mmcv. | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='Detr3DCrossAtten', | ||
pc_range=point_cloud_range, | ||
num_points=1, | ||
embed_dims=256) | ||
], | ||
feedforward_channels=512, | ||
ffn_dropout=0.1, | ||
operation_order=('self_attn', 'norm','cross_attn', 'norm', | ||
'ffn', 'norm')))), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
voxel_size=voxel_size, | ||
num_classes=10), | ||
positional_encoding=dict( | ||
type='mmdet.SinePositionalEncoding', | ||
num_feats=128, | ||
normalize=True, | ||
offset=-0.5), | ||
loss_cls=dict( | ||
type='mmdet.FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0), | ||
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=0.25), | ||
loss_iou=dict(type='mmdet.GIoULoss', loss_weight=0.0)), | ||
# model training and testing settings | ||
train_cfg=dict( | ||
pts=dict( | ||
grid_size=[512, 512, 1], | ||
voxel_size=voxel_size, | ||
point_cloud_range=point_cloud_range, | ||
out_size_factor=4, | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='mmdet.FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
# ↓ Fake cost. This is just to get compatible with DETR head | ||
iou_cost=dict(type='mmdet.IoUCost', weight=0.0), | ||
pc_range=point_cloud_range)))) | ||
|
||
dataset_type = 'NuScenesDataset' | ||
data_root = 'data/nuscenes1/' | ||
|
||
test_transforms = [ | ||
dict( | ||
type='RandomResize3D', | ||
scale=(1600, 900), | ||
ratio_range=(1., 1.), | ||
keep_ratio=True) | ||
] | ||
train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms | ||
|
||
backend_args = None | ||
train_pipeline = [ | ||
dict( | ||
type='LoadMultiViewImageFromFiles', | ||
to_float32=True, | ||
num_views=6, | ||
backend_args=backend_args), | ||
dict( | ||
type='LoadAnnotations3D', | ||
with_bbox_3d=True, | ||
with_label_3d=True, | ||
with_attr_label=False), | ||
dict(type='MultiViewWrapper', transforms=train_transforms), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
|
||
test_pipeline = [ | ||
dict( | ||
type='LoadMultiViewImageFromFiles', | ||
to_float32=True, | ||
num_views=6, | ||
backend_args=backend_args), | ||
dict(type='MultiViewWrapper', transforms=test_transforms), | ||
dict(type='Pack3DDetInputs', keys=['img']) | ||
] | ||
|
||
metainfo = dict(classes=class_names) | ||
data_prefix = dict( | ||
pts='', | ||
CAM_FRONT='samples/CAM_FRONT', | ||
CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT', | ||
CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT', | ||
CAM_BACK='samples/CAM_BACK', | ||
CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT', | ||
CAM_BACK_LEFT='samples/CAM_BACK_LEFT') | ||
|
||
train_dataloader = dict( | ||
batch_size=1, | ||
num_workers=4, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file='nuscenes_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
load_type='frame_based', | ||
metainfo=metainfo, | ||
modality=input_modality, | ||
test_mode=False, | ||
data_prefix=data_prefix, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR', | ||
load_interval = 2, | ||
backend_args=backend_args)) | ||
|
||
val_dataloader = dict( | ||
batch_size=1, | ||
num_workers=4, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file='nuscenes_infos_val.pkl', | ||
load_type='frame_based', | ||
pipeline=test_pipeline, | ||
metainfo=metainfo, | ||
modality=input_modality, | ||
test_mode=True, | ||
data_prefix=data_prefix, | ||
box_type_3d='LiDAR', | ||
backend_args=backend_args)) | ||
|
||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict( | ||
type='NuScenesMetric', | ||
data_root=data_root, | ||
ann_file=data_root + 'nuscenes_infos_val.pkl', | ||
metric='bbox', | ||
backend_args=backend_args) | ||
test_evaluator = val_evaluator | ||
|
||
optim_wrapper = dict( | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=2e-4, weight_decay=0.01), | ||
paramwise_cfg=dict(custom_keys={'img_backbone': dict(lr_mult=0.1)}), | ||
clip_grad=dict(max_norm=35, norm_type=2), | ||
) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', | ||
start_factor=1.0 / 3, | ||
by_epoch=False, | ||
begin=0, | ||
end=500), | ||
dict( | ||
type='CosineAnnealingLR', | ||
by_epoch=True, | ||
begin=0, | ||
end=24, | ||
T_max=24, | ||
eta_min_ratio=1e-3) | ||
] | ||
|
||
total_epochs = 24 | ||
|
||
train_cfg = dict( | ||
type='EpochBasedTrainLoop', max_epochs=total_epochs, val_interval=1) | ||
val_cfg = dict(type='ValLoop') | ||
test_cfg = dict(type='TestLoop') | ||
default_hooks = dict( | ||
checkpoint=dict( | ||
type='CheckpointHook', interval=1, max_keep_ckpts=1, save_last=True)) | ||
load_from = 'pretrained/fcos3d.pth' | ||
|
||
# setuptools 65 downgrades to 58. | ||
# In mmlab-node we use setuptools 61 but occurs NO errors | ||
vis_backends = [dict(type='TensorboardVisBackend')] | ||
visualizer = dict( | ||
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.