Skip to content

A prototype for the RetexoGNNs that are designed for efficient training on distributed graphs

License

Notifications You must be signed in to change notification settings

aashishkolluri/retexognn-prototype

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Retexo

A prototype implementation for RetexoGNNs---the first neural networks for communication-efficient training on fully-distributed graphs.

We suggest using Anaconda for managing the environment

Setting up conda

wget https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
bash Anaconda3-2021.11-Linux-x86_64.sh
conda env create -n [env_name] --file environment.yml
conda activate [env_name]

Quick Start: Training a single model

Details of the datasets and architectures before training

We have considered the following datasets and architectures

Datasets

  Homophilous: cora, citeseer, pubmed, facebook_page, lastfm_asia
  Heterophilous: wiki-cooc, roman-empire (We borrow these datasets from an anonymous ICLR submission)

Architectures

  MLP
  GNNs: GCN, GraphSAGE, GAT
  RetexoGNNs: RetexoGCN, RetexoSAGE, RetexoGAT

Run training for a single model

Train a GNN on homophilous dataset

python src/main.py --dataset [Dataset] --arch [Architecture] --sample_seed [Seed] --hidden_size [HID_s] --num_hidden [HID_n] train --lr [Lr] --dropout [Dropout] --num_epochs [Num_epochs]

Here is an example to train a GCN on a homophilous dataset

python src/main.py --dataset cora --arch gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 train --lr 0.01 --dropout 0.0 --num_epochs 400

Train a RetexoGNN on homophilous dataset

python src/main.py --dataset [Dataset] --arch [Architecture] --sample_seed [Seed] --hidden_size [HID_s] --num_hidden [HID_n] --nl [#Stacked Pooling model] train --lr [Lr] --dropout [Dropout] --num_epochs [Num_epochs]

Use mmlp_[gnn] for the architecture option, and nl is the number of models stacked after the first mlp. So, for 3 models stacked together in retexo nl will be 2. Here is an example to train a RetexoGCN (mmlp_gcn) on a homophilous dataset

python src/main.py --dataset cora --arch mmlp_gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 --nl 2 train --lr 0.01 --dropout --num_epochs 400

Heterophilous and Inductive

In order to train a model on heterphilous dataset, add --hetero in the same command used for homophilous dataset. Here is an example to train a GCN on heterophilous dataset

python src/main.py --dataset wiki-cooc --hetero --arch gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 train --lr 0.01 --dropout 0.0 --num_epochs 400

Similarly, you can train a Retexo model on a heterophilous dataset.

By Default the training will proceed in transductive setting. To train a model in the inductive setting, add the --inductive option.

python src/main.py --dataset cora --arch mmlp_gcn --sample_seed 10 --inductive --hidden_size 256 --num_hidden 2 --nl 2 --sample_neighbors --batch_size 512 --early_stopping train --lr 0.01 --dropout 0.0 --num_epochs 400

Miscellaneous

You can also run for multiple seeds using the --num_seeds option. In order to do neighbor sampling, add the --sample_neighbors. You can also fix the batch size by adding --batch_size [Batch_Size].

python src/main.py --dataset cora --arch mmlp_gcn --num_seeds 10 --hidden_size 256 --num_hidden 2 --nl 2 --sample_neighbors --batch_size 512 train --lr 0.01 --dropout 0.0 --num_epochs 400

Add the --early_stopping option for stopping early based on validation accuracy.

python src/main.py --dataset cora --arch mmlp_gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 --nl 2 --sample_neighbors --batch_size 512 --early_stopping train --lr 0.01 --dropout 0.0 --num_epochs 400

The results are stored in the folder defined in globals.py or the directory specified using the --outdir option, by default the result are stored in ./results. The trained models are stored in the args.outdir/models directory.

Communication Cost

Compare communication cost of GNNs and Retexo

You can calculate communication cost (data transferred) by all the nodes in a dataset. You can compare a gnn with 2 hidden layers i.e. --num_hidden 2 and a retexo with 2 pooling models i.e. --nl 2

In order to calculate communication, follow the commands in given sequence (example for comparing communication cost of gcn and mmlp_gcn)

mkdir comm_results
python src/main.py --dataset cora --arch gcn --sample_seed 10  --hidden_size 128 --num_hidden 2 --calculate_communication --batch_size 512 --sample_neighbors train --lr 0.075 --dropout 0.0 --num_epochs 400
python src/main.py --dataset cora --arch mmlp_gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 --nl 2 --calculate_communication --batch_size 512 --sample_neighbors train --lr 0.005 --dropout 0.0 --num_epochs 400

python src/main.py --dataset cora --arch mmlp_gcn --sample_seed 10 --hidden_size 256 --num_hidden 2 --nl 2 --parse_communication_results --batch_size 512 --sample_neighbors train --lr 0.005 --dropout 0.0 --num_epochs 400
python src/main.py --dataset cora --arch gcn --sample_seed 10 --hidden_size 128 --num_hidden 2 --parse_communication_results --batch_size 512 --sample_neighbors train --lr 0.075 --dropout 0.0 --num_epochs 400

This will create two following files in comm_results --- plot_values_{GNN_Model}_{Dataset}.csv and plot_values_{Retexo_Model}_{Dataset}.csv. These files will be plot_values_gcn_cora.csv and plot_values_mmlp_gcn_cora.csv respectively. Both the files contains the data transferred (in MB) by every node in the dataset for GNN and Retexo respectively in the format node_id, data_transferred for every node. It will also generate a plot from these values in comm_results only named comm_size_{GNN_Model}_{Dataset}.png showcasing a pictorial representation of data transferred by node for GNNs and Retexo. In this case of example, it will be comm_size_gcn_cora.png.

Moreover, you can compare communication of given architectures on their best hyperparameters. Make sure to keep the --num_hidden for GNN and --nl for Retexo to 2.

About

A prototype for the RetexoGNNs that are designed for efficient training on distributed graphs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages