Skip to content

Latest commit

 

History

History
198 lines (150 loc) · 26.7 KB

README_CN.md

File metadata and controls

198 lines (150 loc) · 26.7 KB

简体中文 | English

RKNN Model Zoo

简介

RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程.

  • 支持 RK3562, RK3566, RK3568, RK3588, RK3576 平台。
  • 部分支持RV1103, RV1106
  • 支持 RK1808, RV1109, RV1126 平台。

依赖库安装

RKNN Model Zoo依赖 RKNN-Toolkit2 进行模型转换, 编译安卓demo时需要安卓编译工具链, 编译Linux demo时需要Linux编译工具链。这些依赖的安装请参考 https://github.com/airockchip/rknn-toolkit2/tree/master/doc 的 Quick Start 文档.

  • 请注意, 安卓编译工具链建议使用 r18r19 版本. 使用其他版本可能会遇到 Cdemo 编译失败的问题.

模型支持说明

以下demo除了从对应的仓库导出模型, 也可从网盘 https://console.zbox.filez.com/l/8ufwtG (提取码: rknn) 下载模型文件.

Category Name Dtype Model Download Link Support platform
图像分类 mobilenet FP16/INT8 mobilenetv2-12.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
图像分类 resnet FP16/INT8 resnet50-v2-7.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov5 FP16/INT8 ./yolov5s_relu.onnx
./yolov5n.onnx
./yolov5s.onnx
./yolov5m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov6 FP16/INT8 ./yolov6n.onnx
./yolov6s.onnx
./yolov6m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov7 FP16/INT8 ./yolov7-tiny.onnx
./yolov7.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov8 FP16/INT8 ./yolov8n.onnx
./yolov8s.onnx
./yolov8m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov8_obb INT8 ./yolov8n-obb.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolov10 FP16/INT8 ./yolov10n.onnx
./yolov10s.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolo11 FP16/INT8 ./yolo11n.onnx
./yolo11s.onnx
./yolo11m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolox FP16/INT8 ./yolox_s.onnx
./yolox_m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 ppyoloe FP16/INT8 ./ppyoloe_s.onnx
./ppyoloe_m.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
物体检测 yolo_world FP16/INT8 ./yolo_world_v2s.onnx
./clip_text.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
人体关键点 yolov8_pose INT8 ./yolov8n-pose.onnx RK3566|RK3568|RK3588|RK3562|RK3576
图像分割 deeplabv3 FP16/INT8 ./deeplab-v3-plus-mobilenet-v2.pb RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
图像分割 yolov5_seg FP16/INT8 ./yolov5n-seg.onnx
./yolov5s-seg.onnx
./yolov5m-seg.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
图像分割 yolov8_seg FP16/INT8 ./yolov8n-seg.onnx
./yolov8s-seg.onnx
./yolov8m-seg.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
图像分割 ppseg FP16/INT8 pp_liteseg_cityscapes.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
图像分割 mobilesam FP16 mobilesam_encoder_tiny.onnx
mobilesam_decoder.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
人脸关键点 RetinaFace INT8 RetinaFace_mobile320.onnx
RetinaFace_resnet50_320.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
车牌识别 LPRNet FP16/INT8 ./lprnet.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
文字检测 PPOCR-Det FP16/INT8 ../ppocrv4_det.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
文字识别 PPOCR-Rec FP16 ../ppocrv4_rec.onnx RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
自然语言翻译 lite_transformer FP16 lite-transformer-encoder-16.onnx
lite-transformer-decoder-16.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
RK1808|RK3399PRO
RV1109|RV1126
图文匹配 clip FP16 ./clip_images.onnx
./clip_text.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
语音识别 wav2vec2 FP16 wav2vec2_base_960h_20s.onnx RK3566|RK3568|RK3588|RK3562|RK3576
语音识别 whisper FP16 whisper_encoder_base_20s.onnx
whisper_decoder_base_20s.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
语音识别 zipformer FP16 encoder-epoch-99-avg-1.onnx
decoder-epoch-99-avg-1.onnx
joiner-epoch-99-avg-1.onnx
RK3566|RK3568|RK3588|RK3562|RK3576
语音分类 yamnet FP16 yamnet_3s.onnx RK3566|RK3568|RK3588|RK3562|RK3576
文字转语音 mms_tts FP16 mms_tts_eng_encoder_200.onnx
mms_tts_eng_decoder_200.onnx
RK3566|RK3568|RK3588|RK3562|RK3576

Model performance benchmark(FPS)

demo model_name inputs_shape     dtype RK3566
RK3568
RK3562 RK3588
@single_core
RK3576
@single_core
RV1109 RV1126 RK1808
mobilenet mobilenetv2-12 [1, 3, 224, 224] INT8 180.7 281.3 450.7 467.0 212.9 322.3 170.3
resnet resnet50-v2-7 [1, 3, 224, 224] INT8 37.9 54.9 110.1 99.0 24.4 36.2 37.1
yolov5 yolov5s_relu [1, 3, 640, 640] INT8 25.5 33.2 66.1 65.0 20.2 29.2 37.2
yolov5n [1, 3, 640, 640] INT8 39.7 47.4 82.5 112.7 36.3 53.2 61.2
yolov5s [1, 3, 640, 640] INT8 19.3 23.6 48.4 57.5 13.6 20.0 28.2
yolov5m [1, 3, 640, 640] INT8 8.6 10.8 20.9 23.7 5.8 8.5 13.3
yolov6 yolov6n [1, 3, 640, 640] INT8 48.8 56.4 106.4 109.1 37.8 56.8 66.8
yolov6s [1, 3, 640, 640] INT8 15.2 17.3 36.4 35.0 10.8 16.3 24.1
yolov6m [1, 3, 640, 640] INT8 7.2 8.6 17.8 17.4 5.6 8.3 11.5
yolov7 yolov7-tiny [1, 3, 640, 640] INT8 27.9 36.5 72.7 74.8 15.4 22.4 37.2
yolov7 [1, 3, 640, 640] INT8 4.6 5.9 11.4 13.0 3.3 4.8 7.4
yolov8 yolov8n [1, 3, 640, 640] INT8 34.0 40.9 73.5 90.2 24.0 35.4 42.3
yolov8s [1, 3, 640, 640] INT8 15.1 18.4 38.0 40.8 8.9 13.1 19.1
yolov8m [1, 3, 640, 640] INT8 6.5 8.2 16.2 16.7 3.9 5.8 9.1
yolov8_obb yolov8n-obb [1, 3, 640, 640] INT8 33.9 41.3 74.0 90.2 25.1 37.3 42.8
yolov10 yolov10n [1, 3, 640, 640] INT8 20.7 34.1 61.2 80.2 / / /
yolov10s [1, 3, 640, 640] INT8 10.3 16.9 33.8 39.9 / / /
yolo11 yolo11n [1, 3, 640, 640] INT8 20.6 34.0 60.0 77.9 11.7 17.0 17.6
yolo11s [1, 3, 640, 640] INT8 10.2 16.7 33.0 38.2 5.0 7.3 8.4
yolo11m [1, 3, 640, 640] INT8 4.6 6.5 12.7 14.6 2.8 4.0 5.1
yolox yolox_s [1, 3, 640, 640] INT8 15.2 18.3 37.1 41.5 10.6 15.7 23.0
yolox_m [1, 3, 640, 640] INT8 6.6 8.2 16.0 17.6 4.6 6.8 10.7
ppyoloe ppyoloe_s [1, 3, 640, 640] INT8 7.4 20.0 32.5 41.3 11.2 16.4 21.1
ppyoloe_m [1, 3, 640, 640] INT8 4.1 9.2 15.8 17.8 5.2 7.7 9.4
yolo_world yolo_world_v2s [1, 3, 640, 640] INT8 7.4 9.6 22.1 22.3 / / /
clip_text [1, 20] FP16 29.8 67.4 95.8 63.5 / / /
yolov8_pose yolov8n-pose [1, 3, 640, 640] INT8 22.6 31.0 55.9 66.8 / / /
deeplabv3 deeplab-v3-plus-mobilenet-v2 [1, 513, 513, 1] INT8 10.9 21.4 34.0 39.4 10.1 13.0 4.4
yolov5_seg yolov5n-seg [1, 3, 640, 640] INT8 32.2 38.5 69.3 88.3 28.6 42.2 49.6
yolov5s-seg [1, 3, 640, 640] INT8 15.0 18.1 36.8 41.6 9.6 14.0 22.5
yolov5m-seg [1, 3, 640, 640] INT8 6.8 8.4 16.4 18.0 4.7 6.8 10.8
yolov8_seg yolov8n-seg [1, 3, 640, 640] INT8 27.8 33.0 60.8 71.1 18.6 27.6 32.9
yolov8s-seg [1, 3, 640, 640] INT8 11.7 14.1 28.9 30.8 6.6 9.8 14.6
yolov8m-seg [1, 3, 640, 640] INT8 5.2 6.4 12.6 12.7 3.1 4.6 6.9
ppseg ppseg_lite_1024x512 [1, 3, 512, 512] INT8 5.9 13.9 35.7 33.6 18.4 27.1 20.9
mobilesam mobilesam_encoder_tiny [1, 3, 448, 448] FP16 1.0 6.6 10.0 11.9 / / /
mobilesam_decoder [1, 1, 112, 112] FP16 24.3 69.6 116.4 108.6 / / /
RetinaFace RetinaFace_mobile320 [1, 3, 320, 320] INT8 156.4 300.8 227.2 470.5 144.8 212.5 198.5
RetinaFace_resnet50_320 [1, 3, 320, 320] INT8 18.7 26.9 49.2 56.6 14.6 20.8 24.6
LPRNet lprnet [1, 3, 24, 94] FP16 143.2 420.6 586.4 647.8 30.6(INT8) 47.6(INT8) 30.1(INT8)
PPOCR-Det ppocrv4_det [1, 3, 480, 480] INT8 22.1 28.0 50.7 64.3 11.0 16.1 14.2
PPOCR-Rec ppocrv4_rec [1, 3, 48, 320] FP16 19.5 54.3 73.9 96.8 1.0 1.6 6.7
lite_transformer lite-transformer-encoder-16 embedding-256, token-16 FP16 337.5 725.8 867.6 784.1 22.7 35.4 98.3
lite-transformer-decoder-16 embedding-256, token-16 FP16 142.5 252.0 343.8 272.3 48.0 65.8 109.9
clip clip_images [1, 3, 224, 224] FP16 2.3 3.4 6.5 6.7 / / /
clip_text [1, 20] FP16 29.7 66.6 96.0 63.7 / / /
wav2vec2 wav2vec2_base_960h_20s 20s audio FP16 RTF
0.817
RTF
0.323
RTF
0.133
RTF
0.073
/ / /
whisper whisper_base_20s 20s audio FP16 RTF
1.178
RTF
0.420
RTF
0.215
RTF
0.218
/ / /
zipformer zipformer-bilingual-zh-en-t streaming audio FP16 RTF
0.196
RTF
0.116
RTF
0.065
RTF
0.082
/ / /
yamnet yamnet_3s 3s audio FP16 RTF
0.013
RTF
0.008
RTF
0.004
RTF
0.005
/ / /
mms_tts mms_tts_eng_200 token-200 FP16 RTF
0.311
RTF
0.138
RTF
0.069
RTF
0.069
/ / /
  • 该性能数据基于各平台的最大NPU频率进行测试
  • 该性能数据指模型推理的耗时, 不包含前后处理的耗时
  • /表示当前版本暂不支持

Demo编译说明

对于 Linux 系统的开发板:

./build-linux.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
    -t : target (rk356x/rk3588/rk3576/rv1106/rk1808/rv1126)
    -a : arch (aarch64/armhf)
    -d : demo name
    -b : build_type(Debug/Release)
    -m : enable address sanitizer, build_type need set to Debug
Note: 'rk356x' represents rk3562/rk3566/rk3568, 'rv1106' represents rv1103/rv1106, 'rv1126' represents rv1109/rv1126

# 以编译64位Linux RK3566的yolov5 demo为例:
./build-linux.sh -t rk356x -a aarch64 -d yolov5

对于 Android 系统的开发板:

# 对于 Android 系统的开发板, 首先需要根据实际情况, 设置安卓NDK编译工具的路径
export ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b
./build-android.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
    -t : target (rk356x/rk3588/rk3576)
    -a : arch (arm64-v8a/armeabi-v7a)
    -d : demo name
    -b : build_type (Debug/Release)
    -m : enable address sanitizer, build_type need set to Debug

# 以编译64位Android RK3566的yolov5 demo为例:
./build-android.sh -t rk356x -a arm64-v8a -d yolov5

版本说明

版本 说明
2.3.0 新增 yolo11、zipformer、mms_tts 等示例
2.2.0 添加新例程 wav2vec, mobilesam. 更新部分模型的导出说明
2.1.0 新例程添加, 包含 yolov8_pose, yolov8_obb, yolov10, yolo_world, clip, whisper, yamnet
部分模型暂不支持 RK1808, RV1109, RV1126 平台, 将在下个版本添加支持
2.0.0 新增所有示例RK3576平台的支持
支持RK1808, RV1109, RV1126平台
1.6.0 提供目标检测、图像分割、OCR、车牌识别等多个例程
支持RK3562, RK3566, RK3568, RK3588平台
部分支持RV1103, RV1106平台
1.5.0 提供Yolo检测模型的demo

环境依赖

RKNN Model Zoo 的例程基于当前最新的 RKNPU SDK 进行验证。若使用低版本的 RKNPU SDK 进行验证, 推理性能、推理结果可能会有差异。

版本 RKNPU2 SDK RKNPU1 SDK
2.3.0 >=2.3.0 >=1.7.5
2.2.0 >=2.2.0 >=1.7.5
2.1.0 >=2.1.0 >=1.7.5
2.0.0 >=2.0.0 >=1.7.5
1.6.0 >=1.6.0 -
1.5.0 >=1.5.0 >=1.7.3

RKNPU相关资料

许可证

Apache License 2.0