Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump tensorflow from 2.4.1 to 2.15.0.post1 #31

Closed
wants to merge 1 commit into from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Dec 10, 2023

Bumps tensorflow from 2.4.1 to 2.15.0.post1.

Release notes

Sourced from tensorflow's releases.

TensorFlow 2.15.0

Release 2.15.0

TensorFlow

Breaking Changes

  • tf.types.experimental.GenericFunction has been renamed to tf.types.experimental.PolymorphicFunction.

Major Features and Improvements

  • oneDNN CPU performance optimizations Windows x64 & x86.

    • Windows x64 & x86 packages:
      • oneDNN optimizations are enabled by default on X86 CPUs
    • To explicitly enable or disable oneDNN optimizations, set the environment variable TF_ENABLE_ONEDNN_OPTS to 1 (enable) or 0 (disable) before running TensorFlow. To fall back to default settings, unset the environment variable.
    • oneDNN optimizations can yield slightly different numerical results compared to when oneDNN optimizations are disabled due to floating-point round-off errors from different computation approaches and orders.
    • To verify if oneDNN optimizations are on, look for a message with "oneDNN custom operations are on" in the log. If the exact phrase is not there, it means they are off.
  • Making the tf.function type system fully available:

    • tf.types.experimental.TraceType now allows custom tf.function inputs to declare Tensor decomposition and type casting support.
    • Introducing tf.types.experimental.FunctionType as the comprehensive representation of the signature of tf.function callables. It can be accessed through the function_type property of tf.functions and ConcreteFunctions. See the tf.types.experimental.FunctionType documentation for more details.
  • Introducing tf.types.experimental.AtomicFunction as the fastest way to perform TF computations in Python.

    • Can be accessed through inference_fn property of ConcreteFunctions
    • Does not support gradients.
    • See tf.types.experimental.AtomicFunction documentation for how to call and use it.
  • tf.data:

    • Moved option warm_start from tf.data.experimental.OptimizationOptions to tf.data.Options.
  • tf.lite:

    • sub_op and mul_op support broadcasting up to 6 dimensions.

    • The tflite::SignatureRunner class, which provides support for named parameters and for multiple named computations within a single TF Lite model, is no longer considered experimental. Likewise for the following signature-related methods of tflite::Interpreter:

      • tflite::Interpreter::GetSignatureRunner
      • tflite::Interpreter::signature_keys
      • tflite::Interpreter::signature_inputs
      • tflite::Interpreter::signature_outputs
      • tflite::Interpreter::input_tensor_by_signature
      • tflite::Interpreter::output_tensor_by_signature
    • Similarly, the following signature runner functions in the TF Lite C API are no longer considered experimental:

... (truncated)

Changelog

Sourced from tensorflow's changelog.

Release 2.15.0.post1

TensorFlow

Bug Fixes and Other Changes

  • Hot-fix was needed for an issue affecting the TensorFlow installation process.
    • TensorFlow 2.15.0 Python package was requesting tensorrt-related packages that cannot be found unless the user installs them beforehand or provides additional installation flags.
    • This dependency affected anyone installing TensorFlow 2.15 alongside NVIDIA CUDA dependencies via pip install tensorflow[and-cuda].
    • Depending on the installation method, TensorFlow 2.14 would be installed instead of 2.15, or users could receive an installation error due to those missing dependencies.
  • TensorFlow 2.15.0.post1 is being released for Linux x86_64 to resolve this issue as quickly as possible.
    • This version removes the tensorrt Python package dependencies from the tensorflow[and-cuda] installation method to ensure pip install tensorflow[and-cuda] works as originally intended for TensorFlow 2.15.
    • Support for TensorRT is otherwise unaffected as long as TensorRT is already installed on the system.
  • Using .post1 instead of a full minor release allowed us to push this release out quickly. However, please note the following caveat:
    • For users wishing to pin their Python dependency in a requirements file or other situation, under Python's version specification rules, tensorflow[and-cuda]==2.15.0 will not install this fixed version. Please use ==2.15.0.post1 to specify this exact version on Linux platforms, or a fuzzy version specification, such as ==2.15.*, to specify the most recent compatible version of TensorFlow 2.15 on all platforms.

Release 2.15.0

TensorFlow

Breaking Changes

  • tf.types.experimental.GenericFunction has been renamed to tf.types.experimental.PolymorphicFunction.

Known Caveats

Major Features and Improvements

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.4.1 to 2.15.0.post1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/commits)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Dec 10, 2023
Copy link
Author

dependabot bot commented on behalf of github Jan 2, 2024

Looks like tensorflow is no longer being updated by Dependabot, so this is no longer needed.

@dependabot dependabot bot closed this Jan 2, 2024
@dependabot dependabot bot deleted the dependabot/pip/tensorflow-2.15.0.post1 branch January 2, 2024 17:46
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants