- deep learning for molecules and materials - Andrew White WEBSITE
- Pattern Recognition & Machine Learning - Christopher Bishop BOOK
- Undestanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel & Berend Smit BOOK
- Essentials of Computational Chemistry: Theories and Models - Christopher Cramer BOOK
- Molecular Modelling: Principles and Applications - Andrew Leach BOOK
- Understanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel and Berend Smit BOOK
- Molecular Representations for Drug Discovery - Djork-Arné Clevert YOUTUBE
- Representation and generation of molecular graphs - Tommi Jaakkola YOUTUBE
- Advancing molecular simulation with deep learning - Frank Noe YOUTUBE
- Uncertainty-aware machine learning models of many-body atomic interactions - Boris Kozinsky YOUTUBE
- Machine learning potentials: from polynomials to message passing networks - Gabor Csányi YOUTUBE
- Diffusion based distributional modeling of conformers, blind docking and proteins - Tommi Jaakkola YOUTUBE
- Modeling with Machine Learning: Challenges and Some Solutions - Tommi Jaakkola YOUTUBE
- Language is the future of chemistry - Andrew White YOUTUBE
- Deep Learning the Next Twenty Years of Metamaterials - Willie Padilla YOUTUBE
- LLMs and GPT4 in Materials and Chemistry (How to Be a Chemist in 2023) - Andrew White YOUTUBE
- Iterative Molecular Discovery with interpretable Deep Learning - Andrew White YOUTUBE
- The state of neural network interatomic potentials - Justin Smith YOUTUBE
- Why ML Can Find a New Material, But Not a Needle in a Haystack - Kevin Jablonka YOUTUBE
- Machine learning for atomic-scale modeling: potentials and beyond - Michele Ceriotti YOUTUBE
- Gaussian Process Approximation & Uncertainty Quantification for Autonomous Experiment - Marcus Noack YOUTUBE
- The Pitfalls of Using ML-based Optimization - Tina Eliassi-Rad YOUTUBE
- Harvard CS50: Introduction to Computer Science YOUTUBE
- MIT 6.0001 Introduction to Computer Science and Programming in Python YOUTUBE
- MIT 6.0002 Introduction to Computational Thinking and Data Science YOUTUBE
- MIT 6.034 Artificial Intelligence YOUTUBE
- StatQuest with Josh Starmer YOUTUBE
- Kaggle WEBSITE
- The Hundred Page Machine Learning Book - Andriy Burkov WEBSITE
- Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courville WEBSITE
- Dive into Deep Learning WEBSITE
- fast.ai's Practical Deep Learning for Coders - Jeremy Howard WEBSITE
- Introduction to Machine Learning: Draft of Incomplete Notes - Nils J. Nilsson BOOK
- Machine Learning with PyTorch and Scikit-Learn - Sebastien Raschka, Yuxi Liu and Vahid Mirjalili
- Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow - Aurelien Geron
- Deep Learning with Python - François Chollet
- Machine Learning for Absolute Beginners - Oliver Theobald
- NYU Deep Learning YOUTUBE
- Computer Vision: Algorithms and Applications - Richard Szeliski BOOK
- The Anciest Secrets of Computer Vision - Joseph Redmon YOUTUBE
- Deep Learning for Vision Systems - Mohamed Elgendy
- Algorithms for Decision Making - Mykel Kochenderfer, Tim Wheeler and Kyle Wray WEBSITE
- MIT 6.042J Discrete Mathematics/Mathematics for Computer Science YOUTUBE
- MIT 18.404J Theory of Computation YOUTUBE
- MIT 6.868J The Society of Mind YOUTUBE
- MIT 6.001 Structure and Interpretation, 1986 YOUTUBE
- SICP Reading Group YOUTUBE
- Packaging Scientific Software with Conda-Forge - Jan Janssen YOUTUBE
- Computing at the Moiré Scale - Mitchell Luskin YOUTUBE
- Legacy of Computers / The role of programming - Gerald Jay Sussman LONG | SHORT
All links are from public sources.