Business Problem: Dataset of a bank with 10,000 customers measured lots of attributes of the customer and is seeing unusual churn rates at a high rate. Want to understand what the problem is, address the problem, and give them insights. 10,000 is a sample, millions of customer across Europe. Took a sample of 10,000 measured six months ago lots of factors (name, credit score, grography, age, tenure, balance, numOfProducts, credit card, active member, estimated salary, exited, etc.). For these 10,000 randomly selected customers and track which stayed or left.
Goal: create a geographic segmentation model to tell which of the customers are at highest risk of leaving the bank.
Valuable to any customer-oriented organisations. Geographic Segmentation Modeling can be applied to millions of scenarios, very valuable. (doesn't have to be for banks, churn rate, etc.). Same scenario works for (e.g. should this person get a loan or not? Should this be approved for credit => binary outcome, model, more likely to be reliable). Fradulant transactions (which is more likely to be fradulant)
Binary outcome with lots of independent variables you can build a proper robust model to tell you which factors influence the outcome. alt text
Problem: Classification problem with lots of independent variables (credit score, balance, number of products) and based on these variables we're predicting which of these customers will leave the bank. Artificial Neural Networks can do a terrific job with Classification problems and making those kind of predictions.