-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add experimental distillation training with LoRA
- Loading branch information
Showing
2 changed files
with
191 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
import argparse | ||
|
||
import sillm | ||
import sillm.utils as utils | ||
from sillm.experimental.distillation import Distillation | ||
|
||
if __name__ == "__main__": | ||
# Parse commandline arguments | ||
parser = argparse.ArgumentParser(description="A simple CLI for generating text with SiLLM using speculative decoding.") | ||
parser.add_argument("draft", type=str, help="The input model directory or file") | ||
parser.add_argument("target", type=str, help="The output model directory or file") | ||
parser.add_argument("-c", "--config", default=None, type=str, help="Load YAML configuration file for training") | ||
parser.add_argument("-t", "--train", default=None, type=str, help="Train the model with training dataset in the file/directory") | ||
parser.add_argument("-s", "--seed", type=int, default=-1, help="Seed for randomization") | ||
parser.add_argument("--max_length", default=1024, type=int, help="Max token length per training dataset entry (default: 1024)") | ||
parser.add_argument("--template", type=str, default=None, help="Chat template (chatml, llama2, alpaca, etc.)") | ||
parser.add_argument("--layers", default=0, type=int, help="Layers to use for LoRA (default: 0 for all layers)") | ||
parser.add_argument("--target_modules", default="query_value", type=str, help="Target modules to use for LoRA: query_value, all_linear") | ||
parser.add_argument("--rank", default=8, type=int, help="Rank to use for LoRA (default: 8)") | ||
parser.add_argument("--dropout", default=0.0, type=int, help="Dropout to use for LoRA (default: 0.0)") | ||
parser.add_argument("--scale", default=10.0, type=float, help="Scale to use for LoRA (default: 10.0)") | ||
parser.add_argument("--optimizer", type=str, default="adam", help="Optimizer type (default: adam)") | ||
parser.add_argument("--grad_checkpoint", default=False, action="store_true", help="Use gradient checkpointing") | ||
parser.add_argument("--grad_accu_steps", type=int, default=1, help="Gradient accumulation steps (default: 1)") | ||
parser.add_argument("--learning_rate", default=1e-5, type=float, help="Learning rate (default: 1e-5)") | ||
parser.add_argument("--learning_decay", default=0.0, type=float, help="Learning decay for optimizer schedule (default: 0.0)") | ||
parser.add_argument("--learning_warmup", default=0, type=int, help="Learning warmup for optimizer schedule (default: 0)") | ||
parser.add_argument("--epochs", default=1, type=int, help="Number of epochs (default: 1)") | ||
parser.add_argument("--iterations", default=0, type=int, help="Number of iterations per epoch (default: dataset size)") | ||
parser.add_argument("--batch_size", default=1, type=int, help="Size of training batches (default: 4)") | ||
parser.add_argument("--report_steps", default=10, type=int, help="Number of batch iterations per training report (default: 10)") | ||
parser.add_argument("--eval_steps", default=100, type=int, help="Number of batch iterations per evaluation (default: 100)") | ||
parser.add_argument("--validation_samples", default=40, type=int, help="Number of validation_samples (default: 40)") | ||
parser.add_argument("--loss_alpha", default=0.5, type=float, help="Distillation loss alpha (default: 0.5)") | ||
parser.add_argument("-v", "--verbose", default=1, action="count", help="Increase output verbosity") | ||
args = parser.parse_args() | ||
|
||
# Load YAML configuration file | ||
if args.config is not None: | ||
utils.load_yaml(args.config, args) | ||
|
||
# Initialize logging | ||
log_level = 40 - (10 * args.verbose) if args.verbose > 0 else 0 | ||
logger = utils.init_logger(log_level) | ||
|
||
# Log commandline arguments | ||
if log_level <= 10: | ||
utils.log_arguments(args.__dict__) | ||
|
||
# Set random seed | ||
if args.seed >= 0: | ||
utils.seed(args.seed) | ||
|
||
# Load models | ||
draft_model = sillm.load(args.draft) | ||
target_model = sillm.load(args.target) | ||
|
||
# Freeze draft model | ||
draft_model.model.freeze() | ||
|
||
# Initialize trainable model | ||
distillation_config = { | ||
"loss_alpha": args.loss_alpha | ||
} | ||
target_model = Distillation.from_model(target_model, draft_model, **distillation_config) | ||
|
||
# Initialize LoRA layers | ||
lora_config = { | ||
"num_layers": args.layers, | ||
"target_modules": args.target_modules, | ||
"rank": args.rank, | ||
"dropout": args.dropout, | ||
"scale": args.scale | ||
} | ||
target_model.init_lora(**lora_config) | ||
|
||
# Set conversation template | ||
template = sillm.init_template(draft_model.tokenizer, draft_model.args, template_name=args.template) | ||
|
||
if args.train is not None: | ||
# Load training dataset | ||
dataset_config = { | ||
"template": template, | ||
"max_length": args.max_length | ||
} | ||
dataset_training, dataset_validation, dataset_test = sillm.load_dataset(draft_model.tokenizer, args.train, **dataset_config) | ||
|
||
# Model training | ||
training_config = { | ||
"batch_size": args.batch_size, | ||
"optimizer_type": args.optimizer, | ||
"learning_rate": args.learning_rate, | ||
"learning_decay": args.learning_decay, | ||
"learning_warmup": args.learning_warmup, | ||
"gradient_checkpointing": args.grad_checkpoint, | ||
"gradient_accumulation_steps": args.grad_accu_steps, | ||
"epochs": args.epochs, | ||
"iterations": args.iterations, | ||
"report_steps": args.report_steps, | ||
"eval_steps": args.eval_steps, | ||
"validation_samples": args.validation_samples, | ||
} | ||
target_model.train(dataset_training, | ||
dataset_validation, | ||
**training_config) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import logging | ||
|
||
import numpy as np | ||
|
||
import mlx.core as mx | ||
import mlx.nn as nn | ||
|
||
from sillm.core.llm import LLM | ||
from sillm.models.args import ModelArgs | ||
from sillm.training.lora import TrainableLoRA | ||
|
||
logger = logging.getLogger("sillm") | ||
|
||
######## | ||
# References: | ||
# Geoffrey Hinton, Oriol Vinyals and Jeff Dean. Distilling the Knowledge in a Neural Network. https://arxiv.org/abs/1503.02531 | ||
######## | ||
class Distillation(TrainableLoRA): | ||
@staticmethod | ||
def from_model(target_llm: LLM, draft_llm: LLM, **kwargs): | ||
""" | ||
Convert LLM to trainable distillation LLM. | ||
Args: | ||
llm: LLM to convert. | ||
Returns: | ||
Trainable distillation LLM. | ||
""" | ||
model = Distillation(target_llm.model, draft_llm.model, target_llm.tokenizer, draft_llm.tokenizer, target_llm.args, **kwargs) | ||
model._quantization = target_llm._quantization | ||
|
||
return model | ||
|
||
def __init__(self, | ||
target_model, | ||
draft_model, | ||
target_tokenizer, | ||
draft_tokenizer, | ||
args: ModelArgs, | ||
loss_alpha: float = 0.1 | ||
): | ||
""" | ||
Args: | ||
target_model: Target model instance. | ||
draft_model: Draft model instance. | ||
target_tokenizer: Target tokenizer instance. | ||
draft_tokenizer: Draft tokenizer instance. | ||
args: Model arguments. | ||
loss_alpha: Alpha parameter for distillation loss. | ||
loss_beta: Beta parameter for distillation loss. | ||
""" | ||
if draft_tokenizer.vocab != target_tokenizer.vocab: | ||
raise ValueError("Target and draft tokenizers must have the same vocabulary") | ||
self.vocab_size = len(target_tokenizer.vocab) | ||
|
||
super().__init__(target_model, target_tokenizer, args) | ||
|
||
self.draft_model = draft_model | ||
self.draft_tokenizer = draft_tokenizer | ||
|
||
self.alpha = loss_alpha | ||
self.beta = 1.0 - loss_alpha | ||
|
||
logger.info(f"Initialized model distillation with alpha {loss_alpha}") | ||
|
||
def loss(self, | ||
inputs: mx.array, | ||
targets: mx.array, | ||
loss_masks: mx.array | ||
): | ||
num_tokens = loss_masks.sum() | ||
|
||
# Calculate student loss | ||
student_logits = self.model(inputs)[:, :, :self.vocab_size] | ||
student_loss = nn.losses.cross_entropy(student_logits, targets) * loss_masks | ||
student_loss = student_loss.sum() / num_tokens | ||
|
||
# Calculate distillation loss | ||
teacher_logits = self.draft_model(inputs)[:, :, :self.vocab_size] | ||
teacher_probs = nn.softmax(teacher_logits) | ||
distill_loss = nn.losses.cross_entropy(student_logits, teacher_probs) * loss_masks | ||
distill_loss = distill_loss.sum() / num_tokens | ||
|
||
loss_value = self.alpha * student_loss + self.beta * distill_loss | ||
reward = mx.stack([student_loss, distill_loss]) | ||
|
||
return loss_value, reward, num_tokens |