Skip to content
This repository has been archived by the owner on Sep 7, 2023. It is now read-only.

astro-datalab/specserver

 
 

Repository files navigation

Important

Update 2023-Sept-6: This repository has been archived, and is now read-only. The spectroscopic data service enabled by this code has been retired. Please use the newer SPARCL service from here on: https://astrosparcl.datalab.noirlab.edu

Spectroscopic Data Service

The spectroscopic data service is meant to provide a high-throughput data query and access interface for spectral data. The initial release focuses on SDSS DR8 thru DR16 and will be expanded to include future spectral surveys such as DESI.

Performance can be up to 100X faster than similar interfaces for SDSS data, but is variable depending on the level of processing requested and the specific data release. The SDSS DR16 data are pre-processed to a directory of saved 'numpy' arrays that constitute the core FITS BINTABLE of the data release, however on-the-fly extraction for earlier releases makes all FITS data accessible.

Client Interface

Common Interface

    client = getClient  (context='<context>', profile='<profile>')

      status = isAlive  (svc_url=DEF_SERVICE_URL, timeout=2)

           set_svc_url  (svc_url)
 svc_url = get_svc_url  ()

           set_context  (context)
     ctx = get_context  ()
  ctxs = list_contexts  (context, fmt='text')
  ctxs = list_contexts  (context=None, fmt='text')

           set_profile  (profile)
    prof = get_profile  ()
 profs = list_profiles  (profile, fmt='text')
 profs = list_profiles  (profile=None, fmt='text')

   catalogs = catalogs  (context='default', profile='default')

Query Interface

    Query for a list of spectrum IDs that can then be retrieved from
    the service.  Positional queries in the form of polygonal regions,
    an astropy Coord object or explicit position are supported.  The
    method returns a list of unique spectrum object IDs to be accessed.
    Valid ID values are specific to the data context.

    The 'constraint' parameter may be specified as a valid SQL 'where'
    clause to be added to the query (e.g. to do a color cut of objects).
    [Use of this parameter requires knowledge of the schema being used.]

    The DL user auth token is passed automatically in the X-DL-AuthToken
    header, it may be overridden with the 'token' kw parameter.


      id_list = query (<region> | <coord, size> | <ra, dec, size>,
                       constraint=<sql_where_clause>, out='',
                       context=None, profile=None,
                       **kw)
            where:
                region      Array of polygon vertex tuples (in deg)
                coord       Astropy Coord object
                ra, dec     RA/Dec position (in deg)
                size        Search size (in deg)
                out         Save query results to filename
                constraint  A valid SQL 'where' clause
                context     Dataset context
                profile     Service profile
                kw          optional parameters

            returns:
                An array of object identifiers for the given context. The
                id types will be specific to the dataset and selected by
                a 'fields' kw param or from a specific table, e.g. for 

                kw options:
                  for context='sdss_dr16':
                    fields:
                        specobjid           # or 'bestobjid', etc
                        tuple               # a plate/mjd/fiber/run2d tuple

                        Service will always return array of 'specobjid'
                        value, the p/m/f tuple is extracted from the
                        bitmask value by the client.

                    primary:
                        True                # query sdss_dr16.specobj
                        False               # query sdss_dr16.specobjall
                    catalog:
                        <schema>.<table>    # alternative catalog to query
                                            # e.g. a VAC from earlier DR
                                            # (must support ra/dec search
                                            # and return specobjid-like
                                            # value)

                  for all contexts/profiles:
                    timeout=<timeout>       # query timeout
                    token=<token>           # to pass alternate auth token
                    debug                   # client debug flag
                    verbose                 # client verbosity flag

    Example return values:
        [7201313360318844928, 8170840728492331008, ....]
        [(6396,56358,209), (7257,56658,673), .... ]

    Examples:
        1) Query by polygonal region:

            region = [(0.0,0.0),(1.0,0.0),(0.0,1.0)]
            id_list = spec.query (region)

        2) Query a 0.1deg cone by by astropy Coord:

            from astroquery.sdss import SDSS
            from astropy import coordinates as coords
            pos = coords.SkyCoord('0h8m05.63s +14d50m23.3s', frame='icrs')

            id_list = spec.query (pos, size=0.1)

        3) Query by position:

            id_list = spec.query (0.125, 12.123, 0.1)

        4) Query objects in the DR12 Portsmouth emission line catalog
           is a 10deg cone around (0.0,0.0), return (plate,mjd,fiber):

            id_list = spec.query (0.0, 0.0, 10.0,
                                  catalog='sdss_dr12.emissionlinesport',
                                  fields='tuple')


Data Access Interface

    The Data Access interface is used to retrieve spectra identified by
    an object ID list.  That list can be generated by the query() method
    above, or any other DL query that can produce a valid list of object
    IDs.  A single-object identifier need not be an array, the type of
    identifier allowed (e.g. a int64 or a tuple) is determined by the
    dataset 'context' parameter.  The method returns an array (or single
    value) of the requested format type with one spectrum array for
    each object in the ID list.

    The 'align' parameter can be enabled to re-grid all spectra to a
    common wavelength scale, zero-padding each array as needed.  The
    starting and ending wavelength of aligned data will be the global
    min/max values for all spectra in the list.  If the 'cutout' parameter
    is enabled, data will be excised to the specified boundaris and padded
    as needed (i.e. a cutout implies align=True).

    All data are returned to the caller as and array of the requested 
    type unless the 'out' parameter specifies a directory location in
    which to store the data.  This may be a unix directory path available
    to the user, or a virtual storage URI (e.g. 'vos://myspec/').  If
    fmt='nunpy' then a NumPy save file is created; if the fmt='FITS"
    then the original data release FITS file of coadd spectra is returned.
    The name of the spectrum file on the server is used automatically.

    The DL user auth token is passed automatically in the X-DL-AuthToken
    header, it may be overridden with the 'token' kw parameter.


        list = getSpec  (id_list, fmt='numpy',
                         out=None, align=False, cutout=None,
                         context=None, profile=None,
                         **kw)
            where:
                id_list     List of object IDs (dataset-specific).
                            Must be one of:
                                - single string/int/int64/tuple identifier
                                - python array/list object
                                - string of identifier values (one/line)
                                - filename containing identifiers (one/line)
                                - VOS name containing identifiers (one/line)
                fmt         Result format, one of:
                                numpy
                                pandas
                                Spectrum1D
                                Spectrum1DCollection
                                Spectrum1DList
                                FITS
                out         Output file location (fmt=FITS)
                align       Align spectra to common wavelength grid
                cutout      Cutout range as '<start>-<end>'
                context     Dataset context
                profile     Service profile
                kw          optional parameters

            returns:
                An array of data objects in the requested format, or a
                single object of the requested type when the ID list is
                not an array.  If the 'out' parameter is specified data
                are saved to the specified directory and an 'OK' string
                is returned, or progress output in verbose=True.

    Example return values:
        [<class 'numpy.ndarray'>, <class 'numpy.ndarray'>, ....]
        [<class 'pandas.core.frame.DataFrame'>, ....]
                    :               :           :

    Examples:
        1) Retrieve spectra individually:

            id_list = spec.query (0.125, 12.123, 0.1)
            for id in id_list:
                spec = spec.getSpec (id)
                .... do something

        2) Retrieve spectra in bulk:

            spec = spec.getSpec (id_list, fmt='numpy')
            .... 'spec' is an array of NumPy objects that may be
                 different sizes

        3) Align spectra to a common wavelength grid, zero-padding on
           each side as needed:

            spec = spec.getSpec (id_list, fmt='numpy', align=True)
            .... 'spec' is an array of zero-padded NumPy objects

        4) Cutout the region 6500-7200A from a list of spectra:

            spec = spec.getSpec (id_list, cutout='6500-7200')
            .... 'spec' is an array of NumPy objects clipped to the
                 specified region and aligned as necessary



Plot Interface

    The plot interface is used to retrieve preview graphics of the 
    spectra in the list [via plotGrid() or stackedImage()] or a single
    spectrum [via plot(), preview() or interactively with prospect()].

    When getting multiple spectra, a grid of preview plots of size (nx,ny)
    can be requested and will be constructed on the server and returned 
    as a single PNG file. If the 'page' parameter is set the caller can
    paginate through a list longer than the number of plot in the grid.
    If the 'align' parameter is set, spectra will be aligned to a common
    wavelength grid before plotting.

    The stackedImage() method can be used to return an image array
    in which each spectrum is a row in an output 2-D image.  The 'fmt'
    parameter can be used to request a PNG format, or a raw pixel array.
    The image is created in the same order as the ID list with the first
    ID being the bottom row of the image unless the 'yflip' parameter is
    enabled.  Input ID lists should be sorted (e.g. by redshift) before
    calling this method if some specific order is required.

    The DL user auth token is passed automatically in the X-DL-AuthToken
    header, it may be overridden with the 'token' kw parameter.

                    plot  (data, context=None, profile=None,
                           out=None, **kw)

                            Utility to batch plot a single spectrum, 
                            displays plot directly.  If 'out' specified,
                            plot saved as PNG file.

                            kw parameters:
                                sky=False     Overplot sky lines
                                model=False   Overplot model spectrum
                                lines=<dict>  Mark spectral lines

       status = prospect  (data, context=None, profile=None, **kw)

                            Utility wrapper to launch the interactive
                            PROSPECT tool. [Not Yet Implemented]

                            kw parameters:
                                TBD

         image = preview  (id, context=None, profile=None, **kw)

                            Return a single PNG preview plot of spectrum.

        image = plotGrid  (id_list, nx, ny, page=<N>,
                           context=None, profile=None, **kw)

                            Return an nx X ny grid of preview plots as
                            single PNG image.

    image = stackedImage  (id_list, fmt='png|numpy', 
                           align=False, yflip=False,
                           context=None, profile=None, **kw)

                            Return an image of all spectra in the list
                            rendered as rows in an image.

            where:
                id          Single-object ID (context-specific)
                            Must be one of:
                                - single string/int/int64/tuple identifier
                id_list     List of object IDs (dataset-specific).
                            Must be one of:
                                - single string/int/int64/tuple identifier
                                - python array/list object
                                - string of identifier values (one/line)
                                - filename containing identifiers (one/line)
                                - VOS name containing identifiers (one/line)
                nx, ny      No. plots in each dim of grid
                align       Align spectra to common wavelength grid
                page        Get requested page in grid plot list
                yflip       Flip stacked image in Y dimension
                fmt         Result format
                context     Dataset context
                profile     Service profile
                kw          optional parameters

            returns:
                A PNG file or raw image array.

    Examples:
        1) Display a preview plot a given spectrum:

            from IPython.display import display, Image
            display(Image(spec.preview(id),
                    format='png', width=400, height=100, unconfined=True))

        2) Display a 5x5 grid of preview plots for a list:

            npages = np.round((len(id_list) / 25) + (25 / len(id_list))
            for pg in range(npages):
                data = spec.getGridPlot(id_list, 5, 5, page=pg)
                display(Image(data, format='png',
                        width=400, height=100, unconfined=True))

        3) Display a stacked image of spectra:

            from IPython.display import display, Image
            display(Image(spec.stackedImage(id_list, fmt='png'),
                    format='png', unconfined=True))

Utility Methods

        df = to_pandas  (npy_data)      # convert to Pandas DataFram
spec1d = to_Spectrum1D  (npy_data)      # convert to specutils Spectrum1D
        tab = to_Table  (npy_data)      # convert to Astropy Table

Service Endpoints

The backend service provides the following endpoints:

/                   GET     isAlive() or ping()
/profiles           GET     Return service profiles
/contexts           GET     Return dataset contexts
/catalogs           GET     Return context catalogs

/getSpec            POST    Get spectra for given ID list
/preview            POST    Get preview plots for given ID list
/gridPlot           POST    Get grid of preview plots for given ID list
/stackedImage       POST    Get stacked image of given ID list
/listSpan           POST    Get wavelength limits of array of IDs

/validate           GET     Validate a context/profile value w/ server
/available          GET     Service availability
/shutdown           GET     Shutdown the service
/debug              GET     Toggle debug flag

About

Spectral Data Server and Client API

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%