Important
Update 2023-Sept-6: This repository has been archived, and is now read-only. The spectroscopic data service enabled by this code has been retired. Please use the newer SPARCL service from here on: https://astrosparcl.datalab.noirlab.edu
The spectroscopic data service is meant to provide a high-throughput data query and access interface for spectral data. The initial release focuses on SDSS DR8 thru DR16 and will be expanded to include future spectral surveys such as DESI.
Performance can be up to 100X faster than similar interfaces for SDSS data, but is variable depending on the level of processing requested and the specific data release. The SDSS DR16 data are pre-processed to a directory of saved 'numpy' arrays that constitute the core FITS BINTABLE of the data release, however on-the-fly extraction for earlier releases makes all FITS data accessible.
Common Interface
client = getClient (context='<context>', profile='<profile>')
status = isAlive (svc_url=DEF_SERVICE_URL, timeout=2)
set_svc_url (svc_url)
svc_url = get_svc_url ()
set_context (context)
ctx = get_context ()
ctxs = list_contexts (context, fmt='text')
ctxs = list_contexts (context=None, fmt='text')
set_profile (profile)
prof = get_profile ()
profs = list_profiles (profile, fmt='text')
profs = list_profiles (profile=None, fmt='text')
catalogs = catalogs (context='default', profile='default')
Query Interface
Query for a list of spectrum IDs that can then be retrieved from
the service. Positional queries in the form of polygonal regions,
an astropy Coord object or explicit position are supported. The
method returns a list of unique spectrum object IDs to be accessed.
Valid ID values are specific to the data context.
The 'constraint' parameter may be specified as a valid SQL 'where'
clause to be added to the query (e.g. to do a color cut of objects).
[Use of this parameter requires knowledge of the schema being used.]
The DL user auth token is passed automatically in the X-DL-AuthToken
header, it may be overridden with the 'token' kw parameter.
id_list = query (<region> | <coord, size> | <ra, dec, size>,
constraint=<sql_where_clause>, out='',
context=None, profile=None,
**kw)
where:
region Array of polygon vertex tuples (in deg)
coord Astropy Coord object
ra, dec RA/Dec position (in deg)
size Search size (in deg)
out Save query results to filename
constraint A valid SQL 'where' clause
context Dataset context
profile Service profile
kw optional parameters
returns:
An array of object identifiers for the given context. The
id types will be specific to the dataset and selected by
a 'fields' kw param or from a specific table, e.g. for
kw options:
for context='sdss_dr16':
fields:
specobjid # or 'bestobjid', etc
tuple # a plate/mjd/fiber/run2d tuple
Service will always return array of 'specobjid'
value, the p/m/f tuple is extracted from the
bitmask value by the client.
primary:
True # query sdss_dr16.specobj
False # query sdss_dr16.specobjall
catalog:
<schema>.<table> # alternative catalog to query
# e.g. a VAC from earlier DR
# (must support ra/dec search
# and return specobjid-like
# value)
for all contexts/profiles:
timeout=<timeout> # query timeout
token=<token> # to pass alternate auth token
debug # client debug flag
verbose # client verbosity flag
Example return values:
[7201313360318844928, 8170840728492331008, ....]
[(6396,56358,209), (7257,56658,673), .... ]
Examples:
1) Query by polygonal region:
region = [(0.0,0.0),(1.0,0.0),(0.0,1.0)]
id_list = spec.query (region)
2) Query a 0.1deg cone by by astropy Coord:
from astroquery.sdss import SDSS
from astropy import coordinates as coords
pos = coords.SkyCoord('0h8m05.63s +14d50m23.3s', frame='icrs')
id_list = spec.query (pos, size=0.1)
3) Query by position:
id_list = spec.query (0.125, 12.123, 0.1)
4) Query objects in the DR12 Portsmouth emission line catalog
is a 10deg cone around (0.0,0.0), return (plate,mjd,fiber):
id_list = spec.query (0.0, 0.0, 10.0,
catalog='sdss_dr12.emissionlinesport',
fields='tuple')
Data Access Interface
The Data Access interface is used to retrieve spectra identified by
an object ID list. That list can be generated by the query() method
above, or any other DL query that can produce a valid list of object
IDs. A single-object identifier need not be an array, the type of
identifier allowed (e.g. a int64 or a tuple) is determined by the
dataset 'context' parameter. The method returns an array (or single
value) of the requested format type with one spectrum array for
each object in the ID list.
The 'align' parameter can be enabled to re-grid all spectra to a
common wavelength scale, zero-padding each array as needed. The
starting and ending wavelength of aligned data will be the global
min/max values for all spectra in the list. If the 'cutout' parameter
is enabled, data will be excised to the specified boundaris and padded
as needed (i.e. a cutout implies align=True).
All data are returned to the caller as and array of the requested
type unless the 'out' parameter specifies a directory location in
which to store the data. This may be a unix directory path available
to the user, or a virtual storage URI (e.g. 'vos://myspec/'). If
fmt='nunpy' then a NumPy save file is created; if the fmt='FITS"
then the original data release FITS file of coadd spectra is returned.
The name of the spectrum file on the server is used automatically.
The DL user auth token is passed automatically in the X-DL-AuthToken
header, it may be overridden with the 'token' kw parameter.
list = getSpec (id_list, fmt='numpy',
out=None, align=False, cutout=None,
context=None, profile=None,
**kw)
where:
id_list List of object IDs (dataset-specific).
Must be one of:
- single string/int/int64/tuple identifier
- python array/list object
- string of identifier values (one/line)
- filename containing identifiers (one/line)
- VOS name containing identifiers (one/line)
fmt Result format, one of:
numpy
pandas
Spectrum1D
Spectrum1DCollection
Spectrum1DList
FITS
out Output file location (fmt=FITS)
align Align spectra to common wavelength grid
cutout Cutout range as '<start>-<end>'
context Dataset context
profile Service profile
kw optional parameters
returns:
An array of data objects in the requested format, or a
single object of the requested type when the ID list is
not an array. If the 'out' parameter is specified data
are saved to the specified directory and an 'OK' string
is returned, or progress output in verbose=True.
Example return values:
[<class 'numpy.ndarray'>, <class 'numpy.ndarray'>, ....]
[<class 'pandas.core.frame.DataFrame'>, ....]
: : :
Examples:
1) Retrieve spectra individually:
id_list = spec.query (0.125, 12.123, 0.1)
for id in id_list:
spec = spec.getSpec (id)
.... do something
2) Retrieve spectra in bulk:
spec = spec.getSpec (id_list, fmt='numpy')
.... 'spec' is an array of NumPy objects that may be
different sizes
3) Align spectra to a common wavelength grid, zero-padding on
each side as needed:
spec = spec.getSpec (id_list, fmt='numpy', align=True)
.... 'spec' is an array of zero-padded NumPy objects
4) Cutout the region 6500-7200A from a list of spectra:
spec = spec.getSpec (id_list, cutout='6500-7200')
.... 'spec' is an array of NumPy objects clipped to the
specified region and aligned as necessary
Plot Interface
The plot interface is used to retrieve preview graphics of the
spectra in the list [via plotGrid() or stackedImage()] or a single
spectrum [via plot(), preview() or interactively with prospect()].
When getting multiple spectra, a grid of preview plots of size (nx,ny)
can be requested and will be constructed on the server and returned
as a single PNG file. If the 'page' parameter is set the caller can
paginate through a list longer than the number of plot in the grid.
If the 'align' parameter is set, spectra will be aligned to a common
wavelength grid before plotting.
The stackedImage() method can be used to return an image array
in which each spectrum is a row in an output 2-D image. The 'fmt'
parameter can be used to request a PNG format, or a raw pixel array.
The image is created in the same order as the ID list with the first
ID being the bottom row of the image unless the 'yflip' parameter is
enabled. Input ID lists should be sorted (e.g. by redshift) before
calling this method if some specific order is required.
The DL user auth token is passed automatically in the X-DL-AuthToken
header, it may be overridden with the 'token' kw parameter.
plot (data, context=None, profile=None,
out=None, **kw)
Utility to batch plot a single spectrum,
displays plot directly. If 'out' specified,
plot saved as PNG file.
kw parameters:
sky=False Overplot sky lines
model=False Overplot model spectrum
lines=<dict> Mark spectral lines
status = prospect (data, context=None, profile=None, **kw)
Utility wrapper to launch the interactive
PROSPECT tool. [Not Yet Implemented]
kw parameters:
TBD
image = preview (id, context=None, profile=None, **kw)
Return a single PNG preview plot of spectrum.
image = plotGrid (id_list, nx, ny, page=<N>,
context=None, profile=None, **kw)
Return an nx X ny grid of preview plots as
single PNG image.
image = stackedImage (id_list, fmt='png|numpy',
align=False, yflip=False,
context=None, profile=None, **kw)
Return an image of all spectra in the list
rendered as rows in an image.
where:
id Single-object ID (context-specific)
Must be one of:
- single string/int/int64/tuple identifier
id_list List of object IDs (dataset-specific).
Must be one of:
- single string/int/int64/tuple identifier
- python array/list object
- string of identifier values (one/line)
- filename containing identifiers (one/line)
- VOS name containing identifiers (one/line)
nx, ny No. plots in each dim of grid
align Align spectra to common wavelength grid
page Get requested page in grid plot list
yflip Flip stacked image in Y dimension
fmt Result format
context Dataset context
profile Service profile
kw optional parameters
returns:
A PNG file or raw image array.
Examples:
1) Display a preview plot a given spectrum:
from IPython.display import display, Image
display(Image(spec.preview(id),
format='png', width=400, height=100, unconfined=True))
2) Display a 5x5 grid of preview plots for a list:
npages = np.round((len(id_list) / 25) + (25 / len(id_list))
for pg in range(npages):
data = spec.getGridPlot(id_list, 5, 5, page=pg)
display(Image(data, format='png',
width=400, height=100, unconfined=True))
3) Display a stacked image of spectra:
from IPython.display import display, Image
display(Image(spec.stackedImage(id_list, fmt='png'),
format='png', unconfined=True))
Utility Methods
df = to_pandas (npy_data) # convert to Pandas DataFram
spec1d = to_Spectrum1D (npy_data) # convert to specutils Spectrum1D
tab = to_Table (npy_data) # convert to Astropy Table
The backend service provides the following endpoints:
/ GET isAlive() or ping()
/profiles GET Return service profiles
/contexts GET Return dataset contexts
/catalogs GET Return context catalogs
/getSpec POST Get spectra for given ID list
/preview POST Get preview plots for given ID list
/gridPlot POST Get grid of preview plots for given ID list
/stackedImage POST Get stacked image of given ID list
/listSpan POST Get wavelength limits of array of IDs
/validate GET Validate a context/profile value w/ server
/available GET Service availability
/shutdown GET Shutdown the service
/debug GET Toggle debug flag