generated from jtr13/bookdown-template
-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
355c733
commit 13f97f8
Showing
3 changed files
with
601 additions
and
104 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
--- | ||
title: "Nominal house prices data in Luxembourg - Data cleaning" | ||
author: "Bruno Rodrigues" | ||
date: "`r Sys.Date()`" | ||
--- | ||
|
||
```{r, warning=FALSE, message=FALSE} | ||
library(dplyr) | ||
library(ggplot2) | ||
library(janitor) | ||
library(purrr) | ||
library(readxl) | ||
library(rvest) | ||
library(stringr) | ||
``` | ||
|
||
## Downloading the data | ||
|
||
This data is downloaded from the luxembourguish [Open Data | ||
Portal](https://data.public.lu/fr/datasets/prix-annonces-des-logements-par-commune/) | ||
(the data set called *Série rétrospective des prix annoncés des maisons par commune, de 2010 à 2021*), and the original data is from the "Observatoire de l'habitat". This data | ||
contains prices for houses sold since 2010 for each luxembourguish commune. | ||
|
||
The function below uses the permanent URL from the Open Data Portal to access the data, | ||
but I have also rehosted the data, and use my link to download the data (for archival | ||
purposes): | ||
|
||
```{r} | ||
get_raw_data <- function(url = "https://data.public.lu/fr/datasets/r/14b0156e-ff87-4a36-a867-933fc9a6f903"){ | ||
raw_data <- tempfile(fileext = ".xlsx") | ||
download.file(url, | ||
raw_data, | ||
mode = "wb") # for compatibility with Windows | ||
sheets <- excel_sheets(raw_data) | ||
read_clean <- function(..., sheet){ | ||
read_excel(..., sheet = sheet) %>% | ||
mutate(year = sheet) | ||
} | ||
raw_data <- map_dfr(sheets, | ||
~read_clean(raw_data, | ||
skip = 10, | ||
sheet = .)) %>% | ||
clean_names() | ||
raw_data %>% | ||
rename(locality = commune, | ||
n_offers = nombre_doffres, | ||
average_price_nominal_euros = prix_moyen_annonce_en_courant, | ||
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant, | ||
average_price_m2_nominal_euros = prix_moyen_annonce_au_m2_en_courant | ||
) %>% | ||
mutate(locality = str_trim(locality)) %>% | ||
select(year, locality, n_offers, starts_with("average")) | ||
} | ||
``` | ||
|
||
```{r} | ||
raw_data <- get_raw_data(url = "https://github.com/b-rodrigues/rap4all/raw/master/datasets/vente-maison-2010-2021.xlsx") | ||
``` | ||
|
||
We need clean the data: "Luxembourg" is "Luxembourg-ville" in 2010 and 2011, | ||
then "Luxembourg". "Pétange" is also spelled non-consistently, and we also need | ||
to convert columns to right type. We also directly remove rows where the | ||
locality contains information on the "Source": | ||
|
||
```{r} | ||
clean_raw_data <- function(raw_data){ | ||
raw_data %>% | ||
mutate(locality = ifelse(grepl("Luxembourg-Ville", locality), | ||
"Luxembourg", | ||
locality), | ||
locality = ifelse(grepl("P.tange", locality), | ||
"Pétange", | ||
locality) | ||
) %>% | ||
filter(!grepl("Source", locality)) %>% | ||
mutate(across(starts_with("average"), as.numeric)) | ||
} | ||
``` | ||
|
||
```{r} | ||
flat_data <- clean_raw_data(raw_data) | ||
``` | ||
|
||
We now need to make sure that we got all the communes/localities in there. There | ||
were mergers in 2011, 2015 and 2018. So we need to account for these localities. | ||
|
||
We’re now scraping data from wikipedia of former Luxembourguish communes: | ||
|
||
```{r} | ||
get_former_communes <- function( | ||
url = "https://is.gd/lux_former_communes", | ||
min_year = 2009, | ||
table_position = 3 | ||
){ | ||
read_html(url) %>% | ||
html_table() %>% | ||
pluck(table_position) %>% | ||
clean_names() %>% | ||
filter(year_dissolved > min_year) | ||
} | ||
``` | ||
|
||
```{r} | ||
former_communes <- get_former_communes() | ||
``` | ||
|
||
We can scrape current communes: | ||
|
||
```{r} | ||
get_current_communes <- function( | ||
url = "https://is.gd/lux_communes", | ||
table_position = 2 | ||
){ | ||
read_html(url) |> | ||
html_table() |> | ||
pluck(table_position) |> | ||
clean_names() |> | ||
filter(name_2 != "Name") |> | ||
rename(commune = name_2) |> | ||
mutate(commune = str_remove(commune, " .$")) | ||
} | ||
``` | ||
|
||
```{r} | ||
current_communes <- get_current_communes() | ||
``` | ||
|
||
Let’s now create a list of all communes: | ||
|
||
```{r} | ||
get_test_communes <- function(former_communes, current_communes){ | ||
communes <- unique(c(former_communes$name, current_communes$commune)) | ||
# we need to rename some communes | ||
# Different spelling of these communes between wikipedia and the data | ||
communes[which(communes == "Clemency")] <- "Clémency" | ||
communes[which(communes == "Redange")] <- "Redange-sur-Attert" | ||
communes[which(communes == "Erpeldange-sur-Sûre")] <- "Erpeldange" | ||
communes[which(communes == "Luxembourg City")] <- "Luxembourg" | ||
communes[which(communes == "Käerjeng")] <- "Kaerjeng" | ||
communes[which(communes == "Petange")] <- "Pétange" | ||
communes | ||
} | ||
``` | ||
|
||
```{r} | ||
former_communes <- get_former_communes() | ||
current_communes <- get_current_communes() | ||
communes <- get_test_communes(former_communes, current_communes) | ||
``` | ||
|
||
Let’s test to see if all the communes from our dataset are represented. | ||
|
||
```{r} | ||
setdiff(flat_data$locality, communes) | ||
``` | ||
|
||
If the above code doesn’t show any communes, then this means that we are | ||
accounting for every commune. | ||
|
||
Let’s keep the national average in another dataset: | ||
|
||
```{r} | ||
make_country_level_data <- function(flat_data){ | ||
country_level <- flat_data %>% | ||
filter(grepl("nationale", locality)) %>% | ||
select(-n_offers) | ||
offers_country <- flat_data %>% | ||
filter(grepl("Total d.offres", locality)) %>% | ||
select(year, n_offers) | ||
full_join(country_level, offers_country) %>% | ||
select(year, locality, n_offers, everything()) %>% | ||
mutate(locality = "Grand-Duchy of Luxembourg") | ||
} | ||
``` | ||
|
||
```{r} | ||
country_level_data <- make_country_level_data(flat_data) | ||
``` | ||
|
||
We can finish cleaning the commune data: | ||
|
||
```{r} | ||
make_commune_level_data <- function(flat_data){ | ||
flat_data %>% | ||
filter(!grepl("nationale|offres", locality), | ||
!is.na(locality)) | ||
} | ||
``` | ||
|
||
```{r} | ||
commune_level_data <- make_commune_level_data(flat_data) | ||
``` | ||
|
||
We now save the dataset in a folder for further analysis (keep chunk option to | ||
`eval = FALSE` to avoid running it when knitting): | ||
|
||
```{r, eval = FALSE} | ||
write.csv(commune_level_data, | ||
"datasets/house_prices_commune_level_data.csv", | ||
row.names = FALSE) | ||
write.csv(country_level_data, | ||
"datasets/house_prices_country_level_data.csv", | ||
row.names = FALSE) | ||
``` | ||
|
||
## Functions used for analysis | ||
|
||
The following function compute the Laspeyeres prices index: | ||
|
||
```{r} | ||
get_laspeyeres <- function(dataset){ | ||
which_dataset <- deparse(substitute(dataset)) | ||
group_var <- if(grepl("commune", which_dataset)){ | ||
quo(locality) | ||
} else { | ||
NULL | ||
} | ||
dataset %>% | ||
group_by(!!group_var) %>% | ||
mutate(p0 = ifelse(year == "2010", average_price_nominal_euros, NA)) %>% | ||
fill(p0, .direction = "down") %>% | ||
mutate(p0_m2 = ifelse(year == "2010", average_price_m2_nominal_euros, NA)) %>% | ||
fill(p0_m2, .direction = "down") %>% | ||
ungroup() %>% | ||
mutate(pl = average_price_nominal_euros/p0*100, | ||
pl_m2 = average_price_m2_nominal_euros/p0_m2*100) | ||
} | ||
``` | ||
|
||
and this function plots the data: | ||
|
||
```{r} | ||
make_plot <- function(commune){ | ||
commune_data <- commune_level_data %>% | ||
filter(locality == commune) | ||
data_to_plot <- bind_rows( | ||
country_level_data, | ||
commune_data | ||
) | ||
ggplot(data_to_plot) + | ||
geom_line(aes(y = pl_m2, | ||
x = year, | ||
group = locality, | ||
colour = locality)) | ||
} | ||
``` |