Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
bubbliiiing authored Sep 24, 2020
1 parent f95d1d6 commit 3409b41
Show file tree
Hide file tree
Showing 25 changed files with 1,498 additions and 0 deletions.
2 changes: 2 additions & 0 deletions VOCdevkit/VOC2007/ImageSets/Segmentation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
存放的是指向文件名称的txt

1 change: 1 addition & 0 deletions VOCdevkit/VOC2007/JPEGImages/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
这里面存放的是训练用的图片文件。
1 change: 1 addition & 0 deletions VOCdevkit/VOC2007/SegmentationClass/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
这里面存放的是训练过程中产生的权重。
44 changes: 44 additions & 0 deletions VOCdevkit/voc2pspnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import os
import random

segfilepath=r'./VOCdevkit/VOC2007/SegmentationClass'
saveBasePath=r"./VOCdevkit/VOC2007/ImageSets/Segmentation/"

trainval_percent=1
train_percent=0.9

temp_seg = os.listdir(segfilepath)
total_seg = []
for seg in temp_seg:
if seg.endswith(".png"):
total_seg.append(seg)

num=len(total_seg)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)

print("train and val size",tv)
print("traub suze",tr)
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')

for i in list:
name=total_seg[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
Binary file added datasets/JPEGImages/1.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added datasets/SegmentationClass/1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added datasets/before/1.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
135 changes: 135 additions & 0 deletions datasets/before/1.json

Large diffs are not rendered by default.

46 changes: 46 additions & 0 deletions get_miou_prediction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from pspnet import PSPNet
from torch import nn
from PIL import Image
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import colorsys
import torch
import copy
import os

class miou_Pspnet(PSPNet):
def detect_image(self, image):
orininal_h = np.array(image).shape[0]
orininal_w = np.array(image).shape[1]

image, nw, nh = self.letterbox_image(image,(self.model_image_size[1],self.model_image_size[0]))
images = [np.array(image)/255]
images = np.transpose(images,(0,3,1,2))

with torch.no_grad():
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
if self.cuda:
images = images.cuda()
pr = self.net(images)[0]
pr = F.softmax(pr.permute(1,2,0),dim = -1).cpu().numpy().argmax(axis=-1)

pr = pr[int((self.model_image_size[0]-nh)//2):int((self.model_image_size[0]-nh)//2+nh), int((self.model_image_size[1]-nw)//2):int((self.model_image_size[1]-nw)//2+nw)]

image = Image.fromarray(np.uint8(pr)).resize((orininal_w,orininal_h),Image.NEAREST)

return image

pspnet = miou_Pspnet()

image_ids = open(r"VOCdevkit\VOC2007\ImageSets\Segmentation\val.txt",'r').read().splitlines()

if not os.path.exists("./miou_pr_dir"):
os.makedirs("./miou_pr_dir")

for image_id in image_ids:
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
image = pspnet.detect_image(image)
image.save("./miou_pr_dir/" + image_id + ".png")
print(image_id," done!")
Binary file added img/street.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
63 changes: 63 additions & 0 deletions json_to_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import argparse
import json
import os
import os.path as osp
import warnings

import PIL.Image
import yaml
import numpy as np
from labelme import utils
import base64

if __name__ == '__main__':
jpgs_path = "datasets/JPEGImages"
pngs_path = "datasets/SegmentationClass"
classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# classes = ["_background_","cat","dog"]

count = os.listdir("./datasets/before/")
for i in range(0, len(count)):
path = os.path.join("./datasets/before", count[i])

if os.path.isfile(path) and path.endswith('json'):
data = json.load(open(path))

if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')

img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value

# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))

lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)


PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))

new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
for name in label_names:
index_json = label_names.index(name)
index_all = classes.index(name)
new = new + index_all*(np.array(lbl) == index_json)

utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')
2 changes: 2 additions & 0 deletions logs/README.MD
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
这一部分用来存放训练后的文件。
This part is used to store post training documents.
71 changes: 71 additions & 0 deletions miou.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
import numpy as np
import argparse
import json
from PIL import Image
from os.path import join

# 设标签宽W,长H
def fast_hist(a, b, n):
# a是转化成一维数组的标签,形状(H×W,);b是转化成一维数组的标签,形状(H×W,)
k = (a >= 0) & (a < n)
# np.bincount计算了从0到n**2-1这n**2个数中每个数出现的次数,返回值形状(n, n)
# 返回中,写对角线上的为分类正确的像素点
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)

def per_class_iu(hist):
# 矩阵的对角线上的值组成的一维数组/矩阵的所有元素之和,返回值形状(n,)
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))

def per_class_PA(hist):
# 矩阵的对角线上的值组成的一维数组/矩阵的所有元素之和,返回值形状(n,)
return np.diag(hist) / hist.sum(1)

def compute_mIoU(gt_dir, pred_dir, png_name_list, num_classes, name_classes):
# 计算mIoU的函数
print('Num classes', num_classes)
## 1
hist = np.zeros((num_classes, num_classes))

gt_imgs = [join(gt_dir, x + ".png") for x in png_name_list] # 获得验证集标签路径列表,方便直接读取
pred_imgs = [join(pred_dir, x + ".png") for x in png_name_list] # 获得验证集图像分割结果路径列表,方便直接读取

# 读取每一个(图片-标签)对
for ind in range(len(gt_imgs)):
# 读取一张图像分割结果,转化成numpy数组
pred = np.array(Image.open(pred_imgs[ind]))
# 读取一张对应的标签,转化成numpy数组
label = np.array(Image.open(gt_imgs[ind]))

# 如果图像分割结果与标签的大小不一样,这张图片就不计算
if len(label.flatten()) != len(pred.flatten()):
print(
'Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(
len(label.flatten()), len(pred.flatten()), gt_imgs[ind],
pred_imgs[ind]))
continue
# 对一张图片计算19×19的hist矩阵,并累加
hist += fast_hist(label.flatten(), pred.flatten(),num_classes)
# 每计算10张就输出一下目前已计算的图片中所有类别平均的mIoU值
if ind > 0 and ind % 10 == 0:
print('{:d} / {:d}: mIou-{:0.2f}; mPA-{:0.2f}'.format(ind, len(gt_imgs),
100 * np.mean(per_class_iu(hist)),
100 * np.mean(per_class_PA(hist))))
# 计算所有验证集图片的逐类别mIoU值
mIoUs = per_class_iu(hist)
mPA = per_class_PA(hist)
# 逐类别输出一下mIoU值
for ind_class in range(num_classes):
print('===>' + name_classes[ind_class] + ':\tmIou-' + str(round(mIoUs[ind_class] * 100, 2)) + '; mPA-' + str(round(mPA[ind_class] * 100, 2)))
# 在所有验证集图像上求所有类别平均的mIoU值,计算时忽略NaN值
print('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)) + '; mPA: ' + str(round(np.nanmean(mPA) * 100, 2)))
return mIoUs


if __name__ == "__main__":
gt_dir = "./VOCdevkit/VOC2007/SegmentationClass"
pred_dir = "./miou_pr_dir"
png_name_list = open(r"VOCdevkit\VOC2007\ImageSets\Segmentation\val.txt",'r').read().splitlines()

num_classes = 21
name_classes = ["background","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
compute_mIoU(gt_dir, pred_dir, png_name_list, num_classes, name_classes) # 执行计算mIoU的函数
Binary file added model_data/pspnet_mobilenetv2.pth
Binary file not shown.
157 changes: 157 additions & 0 deletions nets/mobilenetv2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
import torch
import torch.nn.functional as F
import torch.nn as nn
import math
import os
import torch.utils.model_zoo as model_zoo
BatchNorm2d = nn.BatchNorm2d

def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)


def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)


class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]

hidden_dim = round(inp * expand_ratio)
self.use_res_connect = self.stride == 1 and inp == oup

if expand_ratio == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
BatchNorm2d(oup),
)

def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)


class MobileNetV2(nn.Module):
def __init__(self, n_class=1000, input_size=224, width_mult=1.):
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280

interverted_residual_setting = [
# t, c, n, s
# 473,473,3 -> 237,237,32
# 237,237,32 -> 237,237,16
[1, 16, 1, 1],
# 237,237,16 -> 119,119,24
[6, 24, 2, 2],
# 119,119,24 -> 60,60,32
[6, 32, 3, 2],
# 60,60,32 -> 30,30,64
[6, 64, 4, 2],
# 30,30,64 -> 30,30,96
[6, 96, 3, 1],
# 30,30,96 -> 15,15,160
[6, 160, 3, 2],
# 15,15,160 -> 15,15,320
[6, 320, 1, 1],
]

assert input_size % 32 == 0
# 建立stem层
input_channel = int(input_channel * width_mult)
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel

self.features = [conv_bn(3, input_channel, 2)]

# 根据上述列表进行循环,构建mobilenetv2的结构
for t, c, n, s in interverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
if i == 0:
self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
else:
self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
input_channel = output_channel

# mobilenetv2结构的收尾工作
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
self.features = nn.Sequential(*self.features)

# 最后的分类部分
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, n_class),
)

self._initialize_weights()

def forward(self, x):
x = self.features(x)
x = x.mean(3).mean(2)
x = self.classifier(x)
return x

def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()


def load_url(url, model_dir='./model_data', map_location=None):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
filename = url.split('/')[-1]
cached_file = os.path.join(model_dir, filename)
if os.path.exists(cached_file):
return torch.load(cached_file, map_location=map_location)
else:
return model_zoo.load_url(url,model_dir=model_dir)

def mobilenetv2(pretrained=False, **kwargs):
model = MobileNetV2(n_class=1000, **kwargs)
if pretrained:
model.load_state_dict(load_url('http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar'), strict=False)
return model
Loading

0 comments on commit 3409b41

Please sign in to comment.