Skip to content

calico/baskerville

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Baskerville

Sequential regulatory activity predictions with deep convolutional neural networks.

Baskerville provides researchers with tools to:

  1. Train deep convolutional neural networks to predict regulatory activity along very long chromosome-scale DNA sequences
  2. Score variants according to their predicted influence on regulatory activity across the sequence and/or for specific genes.
  3. Annotate the specific nucleotides that drive regulatory element function.

Documentations

Documentation page: https://calico.github.io/baskerville/index.html


Installation

git clone [email protected]:calico/baskerville.git cd baskerville pip install .

To set up the required environment variables: cd baskerville conda activate <conda_env> ./env_vars.sh

Note: Change the two lines of code at the top of './env_vars.sh' to the correct local paths.

Alternatively, the environment variables can be set manually:

export BASKERVILLE_DIR=/home/<user_path>/baskerville
export PATH=$BASKERVILLE_DIR/src/baskerville/scripts:$PATH
export PYTHONPATH=$BASKERVILLE_DIR/src/baskerville/scripts:$PYTHONPATH

export BASKERVILLE_CONDA=/home/<user>/anaconda3/etc/profile.d/conda.sh

Contacts

Dave Kelley (codeowner)

About

Machine learning methods for DNA sequence analysis.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages