Skip to content

Commit

Permalink
BabyRudin: Solution: Ex03 in Ch01: Update
Browse files Browse the repository at this point in the history
  • Loading branch information
gapry committed Jan 29, 2024
1 parent 6433ad6 commit 0b244ec
Showing 1 changed file with 20 additions and 13 deletions.
33 changes: 20 additions & 13 deletions Books/BabyRudin/Chapter01/ex03.gapry.tex
Original file line number Diff line number Diff line change
@@ -1,30 +1,37 @@
\subsection*{Exercise 03 (Gapry)}

\subsubsection*{1.15 Proposition (a)}
As we know $x \neq 0$
\begin{flalign*}
xy &= xz &\\
\implies \frac{1}{x}{x}{y} &= \frac{1}{x}{x}{z} \text{ (by 1.12(M5))} &\\
\implies 1 \cdot {y} &= 1 \cdot {z} \text{ (by 1.12(M4))} &\\
\implies {y} &= {z}
xy &= xz &\\
\implies \frac{1}{x}{x}{y} &= \frac{1}{x}{x}{z} \text{ (by 1.12 (M5))} &\\
\implies 1 \cdot {y} &= 1 \cdot {z} \text{ (by 1.12 (M5))} &\\
\implies {y} &= {z} \text{ (by 1.12 (M4))}
\end{flalign*}

\subsubsection*{1.15 Proposition (b)}
As we know $x \neq 0$
\begin{flalign*}
x \cdot 1 &= x \text{ (by 1.12(M4))} &\\
\implies x \cdot y &= x \text{ (use $y$ to substitute $1$)} &\\
\implies y &= 1
xy &= x &\\
\implies \frac{1}{x}{x}{y} &= \frac{1}{x}{x} \text{ (by 1.12 (M5))} &\\
\implies 1 \cdot {y} &= 1 \text{ (by 1.12 (M5))} &\\
\implies {y} &= 1 \text{ (by 1.12 (M4))}
\end{flalign*}

\subsubsection*{1.15 Proposition (c)}
As we know $x \neq 0$
\begin{flalign*}
x \cdot \frac{1}{x} &= 1 \text{ (by 1.12(M5))} &\\
\implies x \cdot y &= 1 \text{ (use $y$ to substitute $\frac{1}{x}$)} &\\
\implies y &= \frac{1}{x}
xy &= 1 &\\
\implies \frac{1}{x}{x}{y} &= \frac{1}{x} \text{ (by 1.12 (M5))} &\\
\implies 1 \cdot {y} &= \frac{1}{x} \text{ (by 1.12 (M5))} &\\
\implies {y} &= \frac{1}{x} \text{ (by 1.12 (M4))}
\end{flalign*}

\subsubsection*{1.15 Proposition (d)}
We know that $x \in F$ and $x \neq 0$. According to 1.12, there must exist an inverse element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$. Similarly, since $\frac{1}{x} \in F$, there must exist an inverse element $\frac{1}{\frac{1}{x}} \in F$ such that $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1$.
\begin{flalign*}
\frac{1}{\frac{1}{x}} &= \frac{1 \cdot x}{\frac{1}{x} \cdot x}
= \frac{x}{1}
= x \text{ (by 1.12(M5))} &
\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} &= 1 \text{ (by 1.12 (M5))} &\\
x \cdot \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} &= x \cdot 1 \text{ (by 1.12 (M5))} &\\
1 \cdot \frac{1}{\frac{1}{x}} &= x \text{ (by 1.12 (M4, M5))} &\\
\frac{1}{\frac{1}{x}} &= x \text{ (by 1.12 (M4))}
\end{flalign*}

0 comments on commit 0b244ec

Please sign in to comment.