Skip to content

Commit

Permalink
Improved problem 3
Browse files Browse the repository at this point in the history
  • Loading branch information
ceciliachan1979 committed Mar 5, 2024
1 parent 356a165 commit 364ab30
Showing 1 changed file with 28 additions and 13 deletions.
41 changes: 28 additions & 13 deletions Exams/Rutgers-Analysis/midterm.cecilia.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{nth}
\usepackage[utf8]{inputenc}
Expand Down Expand Up @@ -64,22 +65,36 @@ \section*{Problem 2}
\end{eqnarray}

\section*{Problem 3}
Let $ \delta = \min (1, \frac{\epsilon}{8}) $, note that $ 0 < \delta < 1 $, so $ 0 < \delta^2 < \delta $.
Let $ \delta = \min (\sqrt{\frac{\epsilon}{2}}, \frac{\epsilon}{8}) $.

Whenever $ | x - 1 | < \delta $, we have
On one hand, we have:

\begin{eqnarray*}
-\delta &< x - 1 &< \delta \\
2 -\delta &< x + 1 &< 2 + \delta \\
(2 -\delta)^2 &< (x + 1)^2 &< (2 + \delta)^2 \\
4 - 4\delta + \delta^2 &< x^2 + 2x + 1 &< 4 + 4\delta + \delta^2 \\
-4\delta + \delta^2 &< (x^2 + 2x + 1) - 4 &< 4\delta + \delta^2 \\
-4\delta &< (x^2 + 2x + 1) - 4 &< 5\delta \\
-\frac{\epsilon}{2} &< (x^2 + 2x + 1) - 4 &< \frac{5\epsilon}{8} \\
-\epsilon &< (x^2 + 2x + 1) - 4 &< \epsilon
\end{eqnarray*}
\begin{align*}
|x - 1| &< \delta \\
|x - 1| &< \sqrt{\frac{\epsilon}{2}} \\
|(x-1)^2| &< \frac{\epsilon}{2} &\text{square is okay because LHS $\ge$ 0} \\
\end{align*}

On the other hand, we have:

\begin{align*}
|x - 1| &< \delta \\
|x - 1| &< \frac{\epsilon}{8} \\
|4(x-1)| &< \frac{\epsilon}{2} \\
\end{align*}

Therefore, by the triangle inequality, we have:

\begin{align*}
& |x^2 + 2x + 1 - 4 | \\
=& |x^2 - 2x + 1 + 4x - 4| \\
=& |(x-1)^2 + 4(x-1)| \\
<& |(x-1)^2| + |4(x-1)| \\
<& \frac{\epsilon}{2} + \frac{\epsilon}{2} \\
=& \epsilon
\end{align*}

So we conclude that $ \lim_{x \to 1} x^2 + 2x + 1 = 4 $.
Therefore we proved that $ \lim\limits_{x \to 1} x^2 + 2x + 1 = 4 $ by the definition of the limit, it is possible to find a $ \delta $ such that $ |x - 1| < \delta $ implies $ |x^2 + 2x + 1 - 4| < \epsilon $.

\section*{Problem 4}

Expand Down

0 comments on commit 364ab30

Please sign in to comment.