Skip to content

Commit

Permalink
Jirka_RA: Solution: Update: Exercise 1.1.2
Browse files Browse the repository at this point in the history
  • Loading branch information
gapry authored and ceciliachan1979 committed Mar 4, 2024
1 parent 4504acd commit 87f66c1
Showing 1 changed file with 9 additions and 7 deletions.
16 changes: 9 additions & 7 deletions Books/Jirka_RA/Chapter01/Ex1_1/ex02.gapry.tex
Original file line number Diff line number Diff line change
@@ -1,23 +1,25 @@
\subsubsection*{Exercise 1.1.2. (Gapry)}

\begin{flushleft}
Since $\mathbb{A}$ is a subset of $\mathbb{S}$, $\mathbb{A}$ is ordered set. Arrange the elements x of A such that $\{ x_i \ | \ x_n \le x_{n + 1}, n \ge 1, n \in \mathbb{N} \}$
Since $\mathbb{A}$ is a subset of $\mathbb{S}$, $\mathbb{A}$ is ordered set. Arrange the elements x of A such that $\{ x_n \ | \ x_n \le x_{n + 1}, n \ge 1, n \in \mathbb{N} \}$
\end{flushleft}

\begin{flushleft}
Basis Case:
Base Case:

If n = 1, then $A = \{x_1\}$, $\inf A = x_1$, $\sup A = x_1$
If n = 1, then $A = \{x_1\}$. $x_1$ is the minimum and maximum in the set $A$ since $x_1$ is the unique value in the set $A$. It follows $\inf A = x_1$, $\sup A = x_1$.

If n = 2, then $A = \{x_1, x_2\}$, $x_1 \le x_2$, $\inf A = x_1$, $\sup A = x_2$
If n = 2, then $A = \{x_1, x_2\}$, $x_1 \le x_2$. $x_1$ is the minimum and $x_2$ is the maximum in the set $A$. It follows $\inf A = x_1$, $\sup A = x_2$.

If n = 3, then $A = \{x_1, x_2, x_3\}$, $x_1 \le x_2 \le x_3$. $x_1$ is the minimum and $x_3$ is the maximum in the set $A$. It follows $\inf A = x_1$, $\sup A = x_3$.

If n = 3, then $A = \{x_1, x_2, x_3\}$, $x_1 \le x_2 \le x_3$, $\inf A = x_1$, $\sup A = x_3$
\end{flushleft}

\begin{flushleft}
Induction Hypothesis:

If $A = \{x_1, \cdots, x_n\}$, $x_1 \le \cdots \le x_n$, $\inf A = x_1$, $\sup A = x_n$ is true, then
If $A = \{x_1, \cdots, x_n\}$, $x_1 \le \cdots \le x_n$. $x_1$ is the minimum and $x_n$ is the maximum in the set $A$. It follows $\inf A = x_1$, $\sup A = x_n$ is true, then

$A = \{x_1, \cdots, x_n\} \cup \{ y \},\ y \in \mathbb{S} \setminus \{x_1, \cdots, x_n\}$

\textbf{Case 1:}
Expand All @@ -31,5 +33,5 @@ \subsubsection*{Exercise 1.1.2. (Gapry)}
\end{flushleft}

\begin{flushleft}
By the principle of induction, we know that $\inf A$ and $\sup A$ exist and are in $\mathbb{A}$, hence it's bounded.
By the principle of induction, we know that $\inf A$ and $\sup A$ exist and are in $\mathbb{A}$, hence it's bounded. Q.E.D.
\end{flushleft}

0 comments on commit 87f66c1

Please sign in to comment.