Skip to content
Federico Marcos edited this page Aug 8, 2017 · 1 revision

Research material

http://neuralnetworksanddeeplearning.com/

http://selfdrivingcars.mit.edu/

http://cs231n.github.io/

https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6

http://int8.io/chess-position-evaluation-with-convolutional-neural-networks-in-julia/

https://transcranial.github.io/keras-js/#/mnist-cnn

Machine Learning

https://github.com/udacity/CarND-Term1-Starter-Kit https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.2qanv0kkd http://cs231n.github.io/ http://cs231n.stanford.edu/ http://neuralnetworksanddeeplearning.com/ http://www.deeplearningbook.org/ http://course.fast.ai/

Supervised Learning

http://cs231n.stanford.edu/vecDerivs.pdf http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ https://www.youtube.com/watch?v=i94OvYb6noo

TensorFlow

https://www.youtube.com/watch?v=2FmcHiLCwTU https://indico.io/blog/the-good-bad-ugly-of-tensorflow/ http://knote.com/2016/06/16/tensorflow-deep-learning/ https://github.com/aymericdamien/TensorFlow-Examples https://www.oreilly.com/learning/how-to-build-a-robot-that-sees-with-100-and-tensorflow

Convolutional Networks

http://cs231n.github.io/convolutional-networks/ https://en.wikipedia.org/wiki/Convolutional_neural_network https://www.youtube.com/watch?v=FmpDIaiMIeA https://www.youtube.com/watch?v=ghEmQSxT6tw https://www.youtube.com/watch?v=wuo4JdG3SvU http://www.matthewzeiler.com/pubs/arxive2013/eccv2014.pdf https://www.tensorflow.org/versions/r0.11/api_docs/python/nn/convolution http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf

Traffic Sign Classification Project

https://www.johndcook.com/blog/2010/01/13/soft-maximum/ https://en.wikipedia.org/wiki/Precision_and_recall http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network https://en.wikipedia.org/wiki/Histogram_equalization http://docs.opencv.org/3.1.0/d5/daf/tutorial_py_histogram_equalization.html http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html https://github.com/giladgressel/keras-traffic-signs/blob/master/data-set-merge-split-increases-test-accuracy.ipynb

Keras

https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py http://benchmark.ini.rub.de/?section=gtsrb&subsection=news https://keras.io/models/sequential/ https://keras.io/layers/core/ https://keras.io/optimizers/ https://keras.io/objectives/#available-objectives https://keras.io/metrics/#available-metrics

Transfer Learning

http://cs231n.github.io/transfer-learning/ https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/ http://bvlc.eecs.berkeley.edu/ http://benchmark.ini.rub.de/?section=gtsrb&subsection=news http://www.image-net.org/ https://www.cs.toronto.edu/~kriz/cifar.html

Clone this wiki locally