AI-powered Telegram bot all knowing about Chainstack docs. It uses GPT 3.5/4 and context stored using Actvieloop's Deep Lake as a vector database.
index.py
is run to index the data from the docs.main.py
is the bot script itself.
- Clone the repo
git clone https://github.com/soos3d/chainstack-tg-ai-bot.git
- Create a new Python virtual environment
python3 -m venv chainstack-ai-tg
- Activate the virtual environment
source chainstack-ai-tg/bin/activate
- Install dependencies
pip install -r requirements.txt
- Add Telegram bot token and username, API keys, and Deep Lake account path to
.env.example
and rename.env
# Bot config
CHAINSTACK_BOT_TOKEN="BOT_TOKEN_FROM_BOTFATHER" # Chainstack_AI_bot token
CHAINSTACK_BOT_USERNAME="@USERNAME"
# OpenAI
OPENAI_API_KEY="OPENAI_KEY"
EMBEDDINGS_MODEL="text-embedding-ada-002"
LANGUAGE_MODEL="gpt-3.5-turbo" # gpt-4 gpt-3.5-turbo-0613
# Scrape settings
SITE_MAP="https://docs.chainstack.com/sitemap.xml"
URLS_FILTER="https://docs.chainstack.com/reference/"
# Deeplake vector DB
ACTIVELOOP_TOKEN="ACTIVELOOP_TOKEN"
DATASET_PATH="hub://USER_ID/custom_dataset" # "./local_chainstack_docs_db" # Edit with your user ID if you want to use the cloud db. or use the `./` for a local instance.
- Run the index file to scrape the docs and store them
python3 index.py
- Run the main file to start the bot
python3 main.py