Skip to content

chmok/KUDataOutlier

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Time Series Classification

시계열 데이터 분류


1. Without data representation

  • DataFrame 형태의 시계열 데이터를 입력으로 활용하는 time series classification에 대한 설명.
  • 입력 데이터 형태 : TXP (P>=2) 차원의 다변량 시계열 데이터(multivariate time-series data)


time series classification 사용 시, 설정해야하는 값

  • 시계열 분류 모델 :

    • LSTM
    • GRU
    • 1D CNN
  • 시계열 분류 모델 hyperparameter : 아래에 자세히 설명.

    • LSTM hyperparameter
    • GRU hyperparameter
    • 1D CNN hyperparameter

python time series classification.py --model='lstm' \
                                     --attention=False \
                                     --hidden_size=20 \
                                     --num_layers=2 \
                                     --dropout=0.1 \
                                     --bidirectional=False \



시계열 분류 모델 hyperparameter

1. LSTM & GRU

  • attention : If True, adds an attention layer to RNN. Default: False
  • hidden_size : The number of features in the hidden state h
  • num_layers : The number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
  • dropout : If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
  • bidirectional : If True, becomes a bidirectional RNN. Default: False
  • bias : If False, then the layer does not use bias weights b_ih and b_hh. Default: True

2. 1D CNN

  • num_layers : Number of convolutional layers.
  • activation : Type of activation functions to be used. Default : relu
  • dropout : If non-zero, introduces a Dropout layer on the outputs of each CNN layer except the last layer, with dropout probability equal to dropout. Default: 0
  • batch_norm : If True, applies Batch Normalization after CNN layers. Default: False
  • kernel_size : Size of the convolving kernel
  • stride : Stride of the convolution. Default: 1
  • padding : Padding added to both sides of the input. Default: 0
  • dilation : Spacing between kernel elements. Default: 1
  • bias : If True, adds a learnable bias to the output. Default: True



2. With data representation

  • 일정한 형식의 representation을 입력으로 활용하는 classification에 대한 설명.
  • 입력 데이터 형태 : P (P>=2) 차원 벡터
python time series classification with data representation.py --model='fc' \
                                                              --num_layers=2 \
                                                              --activation=relu \
                                                              --dropout=0.2 \
                                                              --batch_norm=True



time series classification 사용 시, 설정해야하는 값

  • 분류 모델 :

    • FC layers (Fully Connected layers)
  • 분류 모델 hyperparameter : 아래에 자세히 설명.

    • FC layers (Fully Connected layers)

분류 모델 hyperparameter

1. FC layers

  • num_layers : The number of linear layers.
  • activation : Type of activation functions to be used. Default : relu
  • dropout : If non-zero, introduces a Dropout layer on the outputs of each CNN layer except the last layer, with dropout probability equal to dropout. Default: 0
  • batch_norm : If True, applies Batch Normalization after CNN layers. Default: False
  • bias : If True, adds a learnable bias to the output. Default: True

About

이상치 탐지 전처리 모듈

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%