시계열 데이터 분류
- DataFrame 형태의 시계열 데이터를 입력으로 활용하는 time series classification에 대한 설명.
- 입력 데이터 형태 : TXP (P>=2) 차원의 다변량 시계열 데이터(multivariate time-series data)
time series classification 사용 시, 설정해야하는 값
-
시계열 분류 모델 :
- LSTM
- GRU
- 1D CNN
-
시계열 분류 모델 hyperparameter : 아래에 자세히 설명.
- LSTM hyperparameter
- GRU hyperparameter
- 1D CNN hyperparameter
python time series classification.py --model='lstm' \
--attention=False \
--hidden_size=20 \
--num_layers=2 \
--dropout=0.1 \
--bidirectional=False \
- attention : If True, adds an attention layer to RNN. Default: False
- hidden_size : The number of features in the hidden state h
- num_layers : The number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the final results. Default: 1
- dropout : If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout. Default: 0
- bidirectional : If True, becomes a bidirectional RNN. Default: False
- bias : If False, then the layer does not use bias weights b_ih and b_hh. Default: True
- num_layers : Number of convolutional layers.
- activation : Type of activation functions to be used. Default : relu
- dropout : If non-zero, introduces a Dropout layer on the outputs of each CNN layer except the last layer, with dropout probability equal to dropout. Default: 0
- batch_norm : If True, applies Batch Normalization after CNN layers. Default: False
- kernel_size : Size of the convolving kernel
- stride : Stride of the convolution. Default: 1
- padding : Padding added to both sides of the input. Default: 0
- dilation : Spacing between kernel elements. Default: 1
- bias : If True, adds a learnable bias to the output. Default: True
- 일정한 형식의 representation을 입력으로 활용하는 classification에 대한 설명.
- 입력 데이터 형태 : P (P>=2) 차원 벡터
python time series classification with data representation.py --model='fc' \
--num_layers=2 \
--activation=relu \
--dropout=0.2 \
--batch_norm=True
time series classification 사용 시, 설정해야하는 값
-
분류 모델 :
- FC layers (Fully Connected layers)
-
분류 모델 hyperparameter : 아래에 자세히 설명.
- FC layers (Fully Connected layers)
- num_layers : The number of linear layers.
- activation : Type of activation functions to be used. Default : relu
- dropout : If non-zero, introduces a Dropout layer on the outputs of each CNN layer except the last layer, with dropout probability equal to dropout. Default: 0
- batch_norm : If True, applies Batch Normalization after CNN layers. Default: False
- bias : If True, adds a learnable bias to the output. Default: True