Medium post on building the first version from scratch: https://becominghuman.ai/extract-a-feature-vector-for-any-image-with-pytorch-9717561d1d4c
- Ranking for recommender systems
- Clustering images to different categories
- Classification tasks
- Image compression
Model name | Return vector length |
---|---|
Resnet-18 | 512 |
Alexnet | 4096 |
Vgg-11 | 4096 |
Densenet | 1024 |
efficientnet_b0 | 1280 |
efficientnet_b1 | 1280 |
efficientnet_b2 | 1408 |
efficientnet_b3 | 1536 |
efficientnet_b4 | 1792 |
efficientnet_b5 | 2048 |
efficientnet_b6 | 2304 |
efficientnet_b7 | 2560 |
Tested on Python 3.6 and torchvision 0.11.0 (nightly, 2021-09-25)
Requires Pytorch: http://pytorch.org/
conda install -c pytorch-nightly torchvision
pip install img2vec_pytorch
python -m img2vec_pytorch.test_img_to_vec
from img2vec_pytorch import Img2Vec
from PIL import Image
# Initialize Img2Vec with GPU
img2vec = Img2Vec(cuda=True)
# Read in an image (rgb format)
img = Image.open('test.jpg')
# Get a vector from img2vec, returned as a torch FloatTensor
vec = img2vec.get_vec(img, tensor=True)
# Or submit a list
vectors = img2vec.get_vec(list_of_PIL_images)
- Pillow:
pip install Pillow
- Sklearn
pip install scikit-learn
git clone https://github.com/christiansafka/img2vec.git
cd img2vec/example
python test_img_similarity.py
Which filename would you like similarities for?
cat.jpg
0.72832 cat2.jpg
0.641478 catdog.jpg
0.575845 face.jpg
0.516689 face2.jpg
Which filename would you like similarities for?
face2.jpg
0.668525 face.jpg
0.516689 cat.jpg
0.50084 cat2.jpg
0.484863 catdog.jpg
Try adding your own photos!
cuda = (True, False) # Run on GPU? default: False
model = ('resnet-18', 'efficientnet_b0', etc.) # Which model to use? default: 'resnet-18'
If you use this library from the app running in read only environment (for example, docker container), specify writable directory where app can store pre-trained models.
export TORCH_HOME=/tmp/torch
layer = 'layer_name' or int # For advanced users, which layer of the model to extract the output from. default: 'avgpool'
layer_output_size = int # Size of the output of your selected layer
gpu = (0, 1, etc.) # Which GPU to use? default: 0
Defaults: (layer = 'avgpool', layer_output_size = 512)
Layer parameter must be an string representing the name of a layer below
conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
bn1 = nn.BatchNorm2d(64)
relu = nn.ReLU(inplace=True)
maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
layer1 = self._make_layer(block, 64, layers[0])
layer2 = self._make_layer(block, 128, layers[1], stride=2)
layer3 = self._make_layer(block, 256, layers[2], stride=2)
layer4 = self._make_layer(block, 512, layers[3], stride=2)
avgpool = nn.AvgPool2d(7)
fc = nn.Linear(512 * block.expansion, num_classes)
Defaults: (layer = 2, layer_output_size = 4096)
Layer parameter must be an integer representing one of the layers below
alexnet.classifier = nn.Sequential(
7. nn.Dropout(), < - output_size = 9216
6. nn.Linear(256 * 6 * 6, 4096), < - output_size = 4096
5. nn.ReLU(inplace=True), < - output_size = 4096
4. nn.Dropout(), < - output_size = 4096
3. nn.Linear(4096, 4096), < - output_size = 4096
2. nn.ReLU(inplace=True), < - output_size = 4096
1. nn.Linear(4096, num_classes), < - output_size = 4096
)
Defaults: (layer = 2, layer_output_size = 4096)
vgg.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
Defaults: (layer = 1 from features, layer_output_size = 1024)
densenet.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
]))
Defaults: (layer = 1 from features, layer_output_size = 1280 for efficientnet_b0 model)
- Benchmark speed and accuracy
- Add ability to fine-tune on input data
- Export documentation to a normal place