Skip to content

Latest commit

 

History

History
135 lines (109 loc) · 3.03 KB

README.md

File metadata and controls

135 lines (109 loc) · 3.03 KB

csv2pronto

README in spanish

This repository contains the Pronto ontology, defined to model information related to real estate listings. Additionally, it contains the csv2pronto script, responsible for translating a CSV file to a graph that adheres to the ontology.

Contents

The csv2pronto folder contains the Python script responsible for converting a source file in CSV format to an RDF that adheres to the Pronto ontology, defined in ./ontology/pronto.owl.

Below are the headers that the input file should have in order to be converted by the script:

  • address
  • advertiser_id
  • advertiser_name
  • age
  • bath_amnt
  • bed_amnt
  • bed_ratio
  • covered_ratio
  • covered_surface
  • covered_surface_unit
  • currency
  • date_extracted
  • date_published
  • description
  • disposition
  • district
  • features
  • garage_amnt
  • is_finished_property
  • is_new_property
  • is_studio_apartmentSee the LICENSE file for more information.
  • land_ratio
  • land_surface
  • land_surface_unit
  • latitude
  • listing_age
  • listing_id
  • longitude
  • luminosity
  • maintenance_fee
  • maintenance_fee_currency
  • neighborhood
  • orientation
  • price
  • price_control
  • property_group
  • property_type
  • province
  • reconstructed_land_surface
  • reconstructed_land_surface_unit
  • reconstructed_total_surface
  • reconstructed_total_surface_unit
  • response
  • room_amnt
  • room_ratio
  • site
  • site_abbreviation
  • title
  • toilete_amnt
  • total_ratio
  • total_surface
  • total_surface_unit
  • transaction
  • uncovered_surface
  • uncovered_surface_unit
  • url
  • year_built

While not all data is mandatory, the more detailed it is, the better the semantic representation produced.

Installation

First, clone this repository with:

git clone https://github.com/tu_usuario/csv2pronto.git

To use this project, you need to have Python 3.10 or higher installed on your system. You can download Python 3 from the official website.

Once done, create a virtual environment and activate it with:

python -m venv .venv
source .venv/bin/activate

All required packages are listed in the requirements.txt file, which can be installed using pip with the following command:

pip install -r requirements.txt

Usage

To use this project, navigate to the project directory and activate the virtual environment:

source venv/bin/activate

Then run the script with Python:

python csv2pronto.py -s <archivo_csv_fuente> -d <archivo_rdf_destino> -o <archivo_ontología> -f <formato_rdf>

Arguments

  • -s, --source: Path to the CSV file to be converted.
  • -d, --destination: Path to the RDF file to be written.
  • -o, --ontology: Path to the ontology to be used.
  • -f, --format: Format of the output graph (e.g., xml, ttl, nt, n3).

Example

python csv2pronto.py -s data.csv -d output.ttl -o pronto.owl -f ttl

License

This project is licensed under the MIT License. See the LICENSE file for more information.