Skip to content

clarype/LTOP_Oregon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 

Repository files navigation

LTOP Overview

LandTrendr is a set of spectral-temporal segmentation algorithms that focuses on removing the natural spectral variations in a time series of Landsat Images. Stabling the natural variation in a time series, gives emphasis on how a landscape is evolving with time. This is useful in many pursuits as it gives information on the state of a landscape, be it growing, remaining stable, or on a decline. LandTrendr is mostly used in Google Earth Engine (GEE), an online image processing console, where it is readily available for use.

A large obstacle in using LandTrendr in GEE, is knowing which configuration of LandTrendr parameters to use. The LandTrendr GEE function uses 9 arguments: 8 parameters that control how spectral-temporal segmentation is executed, and an annual image collection on which to assess and remove the natural variations. The original LandTrendr journal illustrates the effect and sensitivity of changing some of these values. The default parameters for the LandTrendr GEE algorithm do a satisfactory job in many circumstances, but extensive testing and time is needed to hone the parameter selection to get the best segmentation out of the LandTrendr algorithm for a given region. Thus, augmenting the Landtrendr parameter selection process would save time and standardize a method to choose parameters, but we also aim to take this augmentation a step further.

Traditionally, LandTrendr is run over an image collection with a single LandTrendr parameter configuration and is able to remove natural variation for every pixel time series in an image. But no individual LandTrendr parameter configuration is best for all surface conditions, where forest may respond well to one configuration, but many under or over emphasize stabilization in another land class. Thus here we aim to delineate patches of spectrally similar pixels from the imagery, find what LandTrendr parameters work best for each patch group, and run LandTrendr on each patch group location with that best parameter configuration.

LTOP Work Flow (Step by Step)

GEE link open with Emapr Account for dependencies

img

1 Run 01SNICPatches in GEE to generate SNIC images (GEE)

0. Script location

	./LTOP_Oregon/scripts/GEEjs/01SNICPatches.js

1. Copy and paste script in GEE console 

2. Make sure you all needed dependencies (emapr GEE account has all dependencies) 

3. Review in script parameters. Lines 35-39, lines 47-49 (SNIC years), lines 83,84 (SNIC)

4. Run script (01SNICPatches)

5. Run tasks

2 Getting SNIC data from the Google drive to Islay (Moving Data)

1. Open terminal on Islay in a VNC

2. Activate conda environment “py35”

	conda activate py35

3. This script bring data from the Google drive to Islay 

	./LTOP_Oregon/scripts/GEEjs/00_get_chunks_from_gdrive.py

4. Run script 

	python ./LTOP_Oregon/scripts/GEEjs/00_get_chunks_from_gdrive.py LTOP_Oregon_SNIC_v1 ./LTOP_Oregon/rasters/01_SNIC/

5. Check data at download destination. 

	./LTOP_Oregon/rasters/01_SNIC/

3 Merge image chunks into two virtual raster (GDAL)

1. Activate conda environment

	a) conda activate gdal37

2. Build VRT SNIC seed image 

	a) make text file of file path is folder (only tiffs in the folder)

		ls -d "$PWD"/* > listOfTiffs.txt

	b) build vrt raster with text file 

		gdalbuildvrt snic_seed.vrt -input_file_list listOfTiffs.txt

3. Build VRT SNIC image 

	a) make text file of file path is folder (only tiffs in the folder)

		ls -d "$PWD"/* > listOfTiffs.txt

	b) build vrt raster with text file 

		gdalbuildvrt snic_image.vrt -input_file_list listOfTiffs.txt


4. Inspect and process the merged imagery.

	a) Data location:

		./LTOP_Oregon/rasters/01_SNIC/snic_seed.vrt

		./LTOP_Oregon/rasters/01_SNIC/snic_image.vrt	(I don't think this is used in the work flow?)		

4 Raster calc SNIC Seed Image to keep only seed pixels (QGIS)

1. Raster calculation (("seed_band">0)*"seed_band") / (("seed_band">0)*1 + ("seed_band"<=0)*0)

2. Input:

	./LTOP_Oregon/rasters/01_SNIC/snic_seed.vrt

3. Output: 	

	./LTOP_Oregon/rasters/01_SNIC/snic_seed_pixels.tif

Note: 
	This raster calculation change the 0 pixel values to no data in Q-gis. However, this also 
	changes a seed id pixel to no data as well. But one out of hundreds of millions pixels is 
	inconsequential.

5 Change the raster calc SNIC Seed Image into a vector of points. Each point corresponds to a seed pixel. (QGIS)

1. Qgis tool - Raster pixels to points 
 

2. Input

	./LTOP_Oregon/rasters/01_SNIC/snic_seed_pixels.tif

3. Output

	./LTOP_Oregon/vectors/01_SNIC/01_snic_seed_pixel_points/01_snic_seed_pixel_points.shp

6 Sample SNIC Seed Image with Seed points (QGIS)

0. Qgis tool - Sample Raster Values ~3362.35 secs) 

1. Input point layer

	./LTOP_Oregon/vectors/01_SNIC/01_snic_seed_pixel_points/01_snic_seed_pixel_points.shp

2. Raster layer 

	./LTOP_Oregon/rasters/01_SNIC/snic_seed.vrt

3. Output column prefix

	seed_

4. Output location 

	./LTOP_Oregon/vectors/01_SNIC/02_snic_seed_pixel_points_attributted/02_snic_seed_pixel_points_attributted.shp

7 Randomly select a subset of 75k points (QGIS)

0. Qgis tool - Random selection within subsets

1. Input

	./LTOP_Oregon/vectors/01_SNIC/02_snic_seed_pixel_points_attributted/02_snic_seed_pixel_points_attributted.shp

2. Number of selection 

	75000 

	Note: the value above is arbitrary

3. Save selected features as:

	./LTOP_Oregon/vectors/01_SNIC/03_snic_seed_pixel_points_attributted_random_subset_75k/03_snic_seed_pixel_points_attributted_random_subset_75k.shp

8 Upload sample to GEE (Moving data)

1. file location 

	./LTOP_Oregon/vectors/01_SNIC/03_snic_seed_pixel_points_attributted_random_subset_75k/ 

2. Zip shape files in directory

	zip -r 03_snic_seed_pixel_points_attributted_random_subset_75k.zip 03_snic_seed_pixel_points_attributted_random_subset_75k/ 

3. Up load to GEE as asset

4. GEE Asset location 

	users/emaprlab/03_snic_seed_pixel_points_attributted_random_subset_75k

9 Kmeans cluster from SNIC patches (GEE)

1. script local location

	./LTOP_Oregon/scripts/GEEjs/02kMeansCluster.js 

2. copy and paste script into GEE console 

2. Make sure you all needed dependencies 

3. Review in script parameters.

4. Run script

5. Run tasks

	task to drive 

		seed image to Google drive

			./LTOP_Oregon/rasters/02_Kmeans/LTOP_Oregon_Kmeans_seed_image.tif

	task to assets

		kmeans cluster image to GEE assets

			users/emaprlab/LTOP_Oregon_Kmeans_Cluster_Image

10 Export KMeans seed image to Islay (Moving Data)

0. Open terminal on Islay in a VNC


1. Script location 

	./LTOP_Oregon/scripts/GEEjs/

2. Activate conda environment “py35”

	conda activate py35

3. Python script syntax

	python 00_get_chunks_from_gdrive.py <google drive folder name> <local directory>

4. Python Command

	python ./LTOP_Oregon/scripts/GEEjs/00_get_chunks_from_gdrive.py LTOP_Oregon_Kmeans_v1 ./LTOP_Oregon/rasters/02_Kmeans/gee/

3. output location

	./LTOP_Oregon/rasters/02_Kmeans/gee/

12 Sample Kmeans raster (QGIS)

1. Qgis (TOOL: Sample Raster Values)

	a)Input 

		./LTOP_Oregon/rasters/02_Kmeans/LTOP_Oregon_Kmeans_seed_image.tif

		./LTOP_Oregon/vectors/01_SNIC/01_snic_seed_pixel_points/01_snic_seed_pixel_points.shp

	b) Output column prefix

		cluster_id

	c) output

		./LTOP_Oregon/vectors/02_Kmeans/LTOP_Oregon_Kmeans_Cluster_IDs.shp

13 Get single point for each Kmeans cluster (Python)

1) location

	./LTOP_Oregon/scripts/kMeanClustering/randomDistinctSampleOfKmeansClusterIDs_v2.py

2) Edit in script parameters  

	a) input shp file:

		./LTOP_Oregon/vectors/02_Kmeans/LTOP_Oregon_Kmeans_Cluster_IDs/LTOP_Oregon_Kmeans_Cluster_IDs.shp

	b) output shp file:

		./LTOP_Oregon/vectors/02_Kmeans/LTOP_Oregon_Kmeans_Cluster_ID_reps/LTOP_Oregon_Kmeans_Cluster_IDs.shp

3) conda 

	conda activate geo_env

4) run script

	python ./LTOP_Oregon/scripts/kMeanClustering/randomDistinctSampleOfKmeansClusterIDs_v2.py

14 Upload SHP file of 5000 Kmeans cluster IDs points to GEE (Moving Data)

1) location 

	./LTOP_Oregon/vectors/02_Kmeans/LTOP_Oregon_Kmeans_Cluster_ID_reps/

2) zip folder 

	zip -r LTOP_Oregon_Kmeans_Cluster_ID_reps.zip LTOP_Oregon_Kmeans_Cluster_ID_reps/

3) upload to GEE 

	users/emaprlab/LTOP_Oregon_Kmeans_Cluster_ID_reps

15 Sample Landsat Collections with 5000 Kmeans cluster point reps (GEE)

1. script local location

	./LTOP_Oregon/scripts/GEEjs/03abstractSampler.js

2. copy and paste script into GEE console 

2. Make sure you all needed dependencies 

3. Review in script parameters.

4. Run script

5. Run tasks

	task to drive 

		LTOP_Oregon_Abstract_Sample_annualSRcollection_Tranformed_NBRTCWTCGNDVIB5_v1.csv		

16 Download CSV from Google Drive (Moving Data)

1) Download from Google Drive

	LTOP_Oregon_Abstract_Sample_annualSRcollection_Tranformed_NBRTCWTCGNDVIB5_v1.csv

2) location (islay)

	./LTOP_Oregon/tables/abstract_sample_gee/

17 Create Abstract image with CSV (python)

1) Script Location 

	./LTOP_Oregon/scripts/abstractImageSampling/csv_to_abstract_images.py

2) Input

	./LTOP_Oregon/tables/abstract_sample_gee/LTOP_Oregon_Abstract_Sample_annualSRcollection_Tranformed_NBRTCWTCGNDVIB5_v1.csv

3) Outputs

	a) image directory

		./LTOP_Oregon/rasters/03_AbstractImage/

	b) SHP directory

		./LTOP_Oregon/vectors/03_abstract_image_pixel_points/

4) Conda 

	conda activate geo_env

5) Run Command  

	python csv_to_abstract_images.py

18 Upload rasters to GEE and make image collection (Moving Data)

1) Raster location

	./LTOP_Oregon/rasters/03_AbstractImage/

2) make folder in GEE assets to hold all the images 

3) Upload all images to assets folder 

4) Make image collection in GEE assets tab

5) add each abstract image to image collection

19 Upload SHP to GEE (Moving Data)

1) SHP file location

	./LTOP_Oregon/vectors

2) zip files

	zip -r 03_abstract_image_pixel_points.zip 03_abstract_image_pixel_points/

3) Upload to GEE 

20 Run Abstract image for each index (GEE)

1. script local location

	./LTOP_Oregon/scripts/GEEjs/04abstractImager.js

2. copy and paste script into GEE console 

2. Make sure you all needed dependencies 

3. Review in script parameters.

	a) check to make sure runParams pasted correctly (super long list)

	b) run script for each index 'NBR', 'NDVI', 'TCG', 'TCW', 'B5'

		i) editing line 18 to change index name

4. Run script

5. Run tasks

	task to drive (CSV) 

		LTOP_Oregon_abstractImageSamples_5000pts_v2/
						
						LTOP_Oregon_abstractImageSample_5000pts_lt_144params_B5_v2.csv
						LTOP_Oregon_abstractImageSample_5000pts_lt_144params_NBR_v2.csv
						LTOP_Oregon_abstractImageSample_5000pts_lt_144params_NDVI_v2.csv
						LTOP_Oregon_abstractImageSample_5000pts_lt_144params_TCG_v2.csv
						LTOP_Oregon_abstractImageSample_5000pts_lt_144params_TCW_v2.csv

21 Download folder containing CSV‘s one for each index (Moving Data)

1) script location 

	./LTOP_Oregon/scripts/GEEjs/00_get_chunks_from_gdrive.py

2) Run Command 

	conda activate py35

	python 00_get_chunks_from_gdrive.py LTOP_Oregon_abstractImageSamples_5000pts_v2 ./LTOP_Oregon/tables/LTOP_Oregon_Abstract_Image_LT_data/

3) output location 

	./LTOP_Oregon/tables/LTOP_Oregon_Abstract_Image_LT_data/

22 Run LT Parameter Scoring scripts (Python)

1) script locaton

	./LTOP_Oregon/scripts/lt_seletor/01_ltop_lt_parameter_scoring.py

2) Edit line 119 as the input directory of csv files

	a) input directory 

		./LTOP_Oregon/tables/LTOP_Oregon_Abstract_Image_LT_data/


3) Edit line 653 as the output csv file

	a) output line 563

		./LTOP_Oregon/tables/LTOP_Oregon_selected_config/LTOP_Oregon_selected_config.csv

4) run script

	conda activate geo_env

	python ./LTOP_Oregon/scripts/lt_seletor/01_ltop_lt_parameter_scoring.py

23 Run LTOP Parameter Selecting Script (Python)

1) script location

	./LTOP_Oregon/scripts/lt_seletor/02_ltop_select_top_parameter_configuration.py

2) Edit and review script

	input file path line 6

		./LTOP_Oregon/tables/LTOP_Oregon_config_scores/LTOP_Oregon_config_scores.csv

	output file path line 7

		./LTOP_Oregon/tables/LTOP_Oregon_selected_configurations/LTOP_Oregon_config_selected.csv

3) run script

	conda base

	python ./LTOP_Oregon/scripts/lt_seletor/02_ltop_select_top_parameter_configuration.py

24 Upload CSV to GEE (Moving Data)

1) CSV location 

	./LTOP_Oregon/tables/LTOP_Oregon_selected_configurations/LTOP_Oregon_config_selected.csv

2) Upload CSV as an asset to GEE	

26 Generate LTOP image in GEE (GEE) !!!oregon took 3 days time!!!

1) script location

	./LTOP_Oregon/scripts/GEEjs/05lt-Optumum-Imager.js

2) Edit and review script

3) run script

4) Run Task

	asset task

	to drive task

27 Download LTOP imagery (Moving Data)

0. Open terminal on Islay in a VNC


1. Script location 

	./LTOP_Oregon/scripts/GEEjs/

2. Activate conda environment “py35”

	conda activate py35

3. Python script syntax

	python 00_get_chunks_from_gdrive.py <google drive folder name> <local directory>

4. Run script 

	python 00_get_chunks_from_gdrive.py LTOP_Oregon_image_withVertYrs_NBR /LTOP_Oregon/rasters/04_LTOP_Image_NBR/
	
5. Check data at download destination. 

	./LTOP_Oregon/rasters/04_LTOP_Image_NBR/

Valdation

In order to assess the performance of the Oregon LandTrendr Optimization we need to compare it to the triditional LandTrendr data-set. The validation well be carried out by using the LTOP (LandTrendr Optimizaton) dataset as the referance data to the classification of a NLCD dataset. This classification meathod will also be conducted with the traditional LandTrendr dataset. Then the two classified images will be compared to the source NLCD to see which, if any, have better performance.

1 Generate Triditional LandTrendr Run with four indices TCB TCG TCW NBR B5

1. script local location

	./LTOP_Oregon/scripts/GEEjs/10_get_LandTrendr_fitted_data.js

2. copy and paste script into GEE console 

2. Make sure you all needed dependencies 

3. Review in script parameters.

4. Run script

5. Run tasks

	there are 9 task 4 go to assets and 5 go to the drive. They come down to make and be sampled by points

2 Generate LTOP in other indices TCW TCG TCB NBR and B5

1) script location

	./LTOP_Oregon/scripts/GEEjs/05lt-Optumum-Imager.js

2) Edit and review script

3) run script

4) Run Task

	asset task

	to drive task

3 Move Gee data to Islay (both LTOP and LT)

1) LTOP

	B5 TCB TCG TCW NBR

2) LT

	B5 TCB TCG TCW NBR

4 Get Reference data (NLCD)

I got the USGS NLCD for 2016 

	/vol/v1/proj/LTOP_Oregon/rasters/06_USGS_NLCD_2016/usgs_nlcd_oregon_2016_5070.tif


Change the datatype of the NLCD data to int16 from byte. This is for the later merger.

	gdal_translate -ot int16 usgs_nlcd_oregon_2016_5070.tif usgs_nlcd_oregon_2016_5070_int16.tif

5 get 2016 datasets from all LTOP images and merge them into a 2016 ltop raster stack

when do the dataset start and what band is 2016?

	startYear = 1999

    	2016 is band 18

make vrt raster for each of the LTOP rasters stacks 

make vrt raster for each dataset

	ls -d "$PWD"/*.tif > tcw_raster_list.txt

	gdalbuildvrt -input_file_list *_list.txt LTOP_Oregon_TCW.vrt	

get band 18 for each of the LTOP indices and merge them

	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5_2016.tif
	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR_2016.tif
	done 	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB_2016.tif
	done 	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG_2016.tif
	done 	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW_2016.tif

	merge with NLCD 

		Done 	gdal_merge.py -separate -o ./LTOP_Oregon_NLCD_b5_NBR_TCB_TCG_TCW_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/06_USGS_NLCD_2016/usgs_nlcd_oregon_2016_5070_int16.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW_2016.tif 

6 get 2016 datasets from all LT images and merge them into a 2016 lt raster stack

when do the dataset start and what band is 2016?

	startYear = 1999 

	2016 is band 18

make vrt raster for each of the LTOP rasters stacks 

	ls -d "$PWD"/*.tif > tcw_raster_list.txt

	gdalbuildvrt -input_file_list *_list.txt LT_Oregon_TCW.vrt	


get band 18 for each of the LT indices and merge them

	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5_2016.tif
	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR_2016.tif
	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB_2016.tif 
	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG_2016.tif
	done	gdal_translate -b 18 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW_2016.tif

	merge with NLCD

                    Done 	gdal_merge.py -separate -o ./LT_Oregon_NLCD_b5_NBR_TCB_TCG_TCW_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/06_USGS_NLCD_2016/usgs_nlcd_oregon_2016_5070_int16.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG_2016.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW_2016.tif

7 get 2019 datasets from all LTOP images and merge them into a 2019 ltop raster stack

when do the dataset start and what band is 2019?

	startYear = 1999

    	2019 is band 21

make vrt raster for each of the LTOP rasters stacks 

	done in step 5

get band 21 for each of the LTOP indices and merge them

	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5_2019.tif
	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR_2019.tif
	done 	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB_2019.tif
	done 	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG_2019.tif
	done 	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW.vrt /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW_2019.tif

	merge with NLCD 

		Done 	gdal_merge.py -separate -o ./LTOP_Oregon_NLCD_b5_NBR_TCB_TCG_TCW_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/06_USGS_NLCD_2019/usgs_nlcd_oregon_2019_5070_int19.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_B5/LTOP_Oregon_B5_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_NBR/LTOP_Oregon_NBR_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCB/LTOP_Oregon_TCB_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCG/LTOP_Oregon_TCG_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/04_LTOP_Imagery/LTOP_Oregon_Image_TCW/LTOP_Oregon_TCW_2019.tif 

8 get 2019 datasets from all LT images and merge them into a 2019 lt raster stack

when do the dataset start and what band is 2019?  
	
	startYear = 1999 

	2019 is band 21

make vrt raster for each of the LTOP rasters stacks 

	done in step 6

get band 21 for each of the LT indices and merge them

	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5_2019.tif
	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR_2019.tif
	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB_2019.tif 
	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG_2019.tif
	done	gdal_translate -b 21 /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW.vrt /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW_2019.tif

	merge with NLCD

                    Done 	gdal_merge.py -separate -o ./LT_Oregon_NLCD_b5_NBR_TCB_TCG_TCW_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/06_USGS_NLCD_2019/usgs_nlcd_oregon_2019_5070_int19.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/b5/LT_Oregon_B5_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/nbr/LT_Oregon_NBR_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcb/LT_Oregon_TCB_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcg/LT_Oregon_TCG_2019.tif /vol/v1/proj/LTOP_Oregon/rasters/05_LT_Orig_for_validation/tcw/LT_Oregon_TCW_2019.tif

7 Generate sample of points to sample both LTOP and LT

calculate the what sample size is needed

	get NLCD pixel class counts

	total pixels :291888761
	{11: 5916526, 12: 39078, 21: 4497750, 22: 2215526, 23: 1354569, 24: 480052, 31: 1897382, 41: 720548, 42: 92977629, 43: 6783384, 52: 97276198, 71: 48705343, 81: 9056400, 82: 14139759, 90: 1834268, 95: 3994349}

(()/())^2 

!! Crazy Thought how about Neural Networks??? I know very little about them and they seem pop right now. I cam across a cool look workflow thing that may have all my awnsers.

https://towardsdatascience.com/neural-network-for-satellite-data-classification-using-tensorflow-in-python-a13bcf38f3e1

but I still need to set up my new predictors for 2019.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published