-
Notifications
You must be signed in to change notification settings - Fork 14
/
pushing.py
404 lines (334 loc) · 12.4 KB
/
pushing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Python standard lib
import os
import sys
import math
import pathlib
# PyBullet
import pybullet_api
# OpTaS
import optas
from optas.spatialmath import *
from scipy.spatial.transform import Rotation as Rot
def yaw2quat(angle):
return optas.DM(Rot.from_euler("z", angle).as_quat())
def rot2(angle):
return cs.DM(Rot.from_euler("z", angle).as_matrix()[:2, :2])
######################################
# Task space planner
#
# This is an implementation of [1].
#
# References
#
# 1. J. Moura, T. Stouraitis, and S. Vijayakumar, Non-prehensile
# Planar Manipulation via Trajectory Optimization with
# Complementarity Constraints, ICRA, 2022.
#
class TOMPCCPlanner:
def __init__(self, dt, Lx, Ly):
# Setup
mu = 0.1 # coef of friction
dt = float(dt) # time step
nX = 4 # number of state variables
nU = 4 # number of control variables
T = 20 # number of step
Lx = float(Lx) # length of slider (box) in x-axis
Ly = float(Ly) # length of slider (box) in y-axis
phi_lo = math.atan2(Lx, Ly) # lower limit for phi
phi_up = -phi_lo # upper limit for phi
L = optas.diag([1, 1, 0.5]) # limit surface model
SxC0 = 0.5 * Ly # initial contact position in x-axis of slider
SyC0 = 0.0 # initial contact position in y-axis of slider
SphiC0 = 0.0 # initial contact orientation in slider frame
Wu = optas.diag(
[ # weigting on minimizing controls cost term
0.0, # normal contact force
0.0, # tangential contact force
0.0, # angular rate of sliding, positive part
0.0, # angular rate of sliding, negative part
]
)
WxT = optas.diag(
[ # weighting for terminal state cost term
1.0, # x-position of slider
1.0, # y-position of slider
0.01, # orientation of slider
0.001, # orientation of contact
]
)
we = 0.1 # slack weights
SphiCT = 0.0 # final contact orientation in slider frame
# Setup task models
state = optas.TaskModel("state", dim=nX, time_derivs=[0])
control = optas.TaskModel(
"control", dim=nU, time_derivs=[0], T=T - 1, symbol="u"
)
# Setup optimization builder
builder = optas.OptimizationBuilder(T=T, tasks=[state, control])
# Add additional decision variables
eps = builder.add_decision_variables("slack", T - 1)
# Set parameters
GpS0 = builder.add_parameter(
"GpS0", 2
) # initial slider position in global frame
GthetaS0 = builder.add_parameter(
"GthetaS0"
) # initial slider orientation in global frame
GpST = builder.add_parameter("GpST", 2) # goal slider position in global frame
GthetaST = builder.add_parameter(
"GthetaST"
) # goal slider orientation in global frame
# Get states/controls
X = builder.get_model_states("state")
U = builder.get_model_states("control")
# Constraint: initial configuration
x0 = optas.vertcat(GpS0, GthetaS0, SphiC0)
builder.fix_configuration("state", config=x0)
# Split X/U
theta = X[2, :]
phi = X[3, :]
fn = U[0, :]
ft = U[1, :]
dphip = U[2, :]
dphim = U[3, :]
# Constraint: dynamics
o2 = optas.DM.zeros(2) # 2-vector of zeros
o3 = optas.DM.zeros(3) # 3-vector of zeros
I = optas.DM.eye(2) # 2-by-2 identity
for k in range(T - 1):
# Setup
xn = X[:, k + 1] # next state
x = X[:, k] # current state
u = U[:, k] # control input
R = rotz(
theta[k] - 0.5 * optas.np.pi
) # rotation matrix in xy-plane of slider
SxC = 0.5 * Ly # x-position of box
SyC = SxC * optas.tan(phi[0]) # y-position of contact
JC = optas.horzcat(I, optas.vertcat(-SyC, SxC))
# Compute system dynamics f(x, u) = Ku
K = optas.vertcat(
optas.horzcat(R @ L @ JC.T, o3, o3),
optas.horzcat(o2.T, 1, -1),
)
f = K @ u
# Add constraint
builder.add_equality_constraint(f"dynamics_{k}", xn, x + dt * f)
# Constraint: complementarity
lambda_minus = mu * fn - ft
lambda_plus = mu * fn + ft
lambdav = optas.vertcat(lambda_minus, lambda_plus)
dphiv = optas.vertcat(dphip, dphim)
builder.add_geq_inequality_constraint("positive_lambdav", lambdav)
builder.add_geq_inequality_constraint("positive_dphiv", dphiv)
for k in range(T - 1):
e = eps[k]
lambdavk = lambdav[:, k]
dphivk = dphiv[:, k]
builder.add_equality_constraint(
f"complementarity_{k}",
optas.dot(lambdavk, dphivk) + e,
)
# Cost: minimize control magnitude
for k in range(T - 1):
u = U[:, k]
builder.add_cost_term(f"min_control_{k}", u.T @ Wu @ u)
# Cost: terminal state
xT = optas.vertcat(GpST, GthetaST, SphiCT)
xbarT = X[:, -1] - xT
builder.add_cost_term("terminal_state", xbarT.T @ WxT @ xbarT)
# Cost: slack terms
builder.add_cost_term("slack", we * cs.sumsqr(eps))
# Constraint: slack
builder.add_geq_inequality_constraint("positive_slack", eps)
# Constraint: bound phi
builder.add_bound_inequality_constraint("phi_bound", phi_lo, phi, phi_up)
# Setup solver
opt = builder.build()
# self.solver = optas.CasADiSolver(opt).setup('ipopt')
self.solver = optas.ScipyMinimizeSolver(opt).setup("SLSQP")
# For later
self.Tmax = float(T - 1) * dt
self.T = T
self.nX = nX
def plan(self, GpS0, GthetaS0, GpST, GthetaST):
state_x_init = optas.DM.zeros(self.nX, self.T)
for k in range(self.T):
alpha = float(k) / float(self.T - 1)
state_x_init[:2, k] = optas.DM(GpS0) * (1 - alpha) + alpha * optas.DM(GpST)
state_x_init[2, k] = GthetaS0 * (1 - alpha) + alpha * GthetaST
self.solver.reset_initial_seed(
{
"state/y/x": state_x_init,
"control/u": 0.01 * optas.DM.ones(4, self.T - 1),
}
)
self.solver.reset_parameters(
{
"GpS0": GpS0,
"GthetaS0": GthetaS0,
"GpST": GpST,
"GthetaST": GthetaST,
}
)
solution = self.solver.solve()
optas.np.set_printoptions(suppress=True, precision=3, linewidth=1000)
slider_traj = solution["state/y"]
slider_plan = self.solver.interpolate(slider_traj, self.Tmax)
return slider_plan
######################################
# Joint space IK
#
class IK:
def __init__(self, dt, thresh_angle):
cwd = pathlib.Path(
__file__
).parent.resolve() # path to current working directory
pi = optas.np.pi # 3.141...
T = 1 # no. time steps in trajectory
link_ee = "end_effector_ball" # end-effector link name
# Setup robot
urdf_filename = os.path.join(cwd, "robots", "kuka_lwr", "kuka_lwr.urdf")
kuka = optas.RobotModel(
urdf_filename=urdf_filename,
time_derivs=[1], # i.e. joint velocity
)
kuka_name = kuka.get_name()
# Setup optimization builder
builder = optas.OptimizationBuilder(T=T, robots=[kuka], derivs_align=True)
# Setup parameters
qc = builder.add_parameter("qc", kuka.ndof) # current robot joint configuration
pg = builder.add_parameter("pg", 3) # goal end-effector position
# Get joint velocity
dq = builder.get_model_state(kuka_name, t=0, time_deriv=1)
# Get next joint state
q = qc + dt * dq
# Get jacobian
Jl = kuka.get_global_link_linear_jacobian(link_ee, qc)
# Get end-effector velocity
dp = Jl @ dq
# Get current end-effector position
pc = kuka.get_global_link_position(link_ee, qc)
# Get next end-effector position
p = pc + dt * dp
# Cost: match end-effector position
diffp = p - pg
W_p = optas.diag([1e2, 1e2, 1e3])
builder.add_cost_term("match_p", diffp.T @ W_p @ diffp)
# Cost: min joint velocity
w_dq = 0.01
builder.add_cost_term("min_dq", w_dq * optas.sumsqr(dq))
# Get global z-axis of end-effector
T = kuka.get_global_link_transform(link_ee, q)
z = T[:3, 2]
# Constraint: eff orientation
e = optas.DM([0, 0, -1.0])
builder.add_leq_inequality_constraint(
"eff_orien", optas.cos(thresh_angle), e.T @ z
)
# Cost: align eff
w_ori = 1e4
builder.add_cost_term("eff_orien", w_ori * optas.sumsqr(e.T @ z - 1))
# Setup solver
optimization = builder.build()
self.solver = optas.CasADiSolver(optimization).setup("ipopt")
# Setup variables required later
self.kuka_name = kuka_name
def compute_target_velocity(self, qc, pg):
self.solver.reset_parameters({"qc": optas.DM(qc), "pg": optas.DM(pg)})
solution = self.solver.solve()
return solution[f"{self.kuka_name}/dq"].toarray().flatten()
def main(gui=True):
# Setup PyBullet
qc = -optas.np.deg2rad([0, 30, 0, -90, 0, 60, 0])
q = qc.copy()
eff_ball_radius = 0.015
hz = 50
dt = 1.0 / float(hz)
pb = pybullet_api.PyBullet(
dt,
camera_distance=0.5,
camera_target_position=[0.3, 0.2, 0.0],
camera_yaw=135,
gui=gui,
)
kuka = pybullet_api.KukaLWR()
kuka.reset(qc)
GxS0 = 0.4
GyS0 = 0.065
GthetaS0 = 0.0
box_base_position = [GxS0, GyS0, 0.06]
Lx = 0.2
Ly = 0.1
box_half_extents = [0.5 * Lx, 0.5 * Ly, 0.06]
box = pybullet_api.DynamicBox(
base_position=box_base_position,
half_extents=box_half_extents,
)
GxST = 0.45
GyST = 0.3
GthetaST = 0.1 * optas.np.pi
pybullet_api.VisualBox(
base_position=[GxST, GyST, 0.06],
base_orientation=yaw2quat(GthetaST).toarray().flatten(),
half_extents=box_half_extents,
rgba_color=[1.0, 0.0, 0.0, 0.5],
)
plan_box = pybullet_api.VisualBox(
base_position=[GxS0, GyS0, 0.06],
half_extents=box_half_extents,
rgba_color=[0.0, 0.0, 1.0, 0.5],
)
# Setup TO MPCC planner
to_mpcc_planner = TOMPCCPlanner(0.1, Lx, Ly)
# Setup IK
thresh_angle = optas.np.deg2rad(30.0)
ik = IK(dt, thresh_angle)
# Start pybullet
pb.start()
start_time = pybullet_api.time.time()
# Move robot to start position
Tmax_start = 6.0
pginit = optas.np.array([0.4, 0.0, 0.06])
while True:
t = pybullet_api.time.time() - start_time
if t > Tmax_start:
break
dqgoal = ik.compute_target_velocity(q, pginit)
q += dt * dqgoal
kuka.cmd(q)
pybullet_api.time.sleep(dt * float(gui))
# Plan a trajectory
GpS0 = [GxS0, GyS0]
GpST = [GxST, GyST]
plan = to_mpcc_planner.plan(GpS0, GthetaS0, GpST, GthetaST)
# Main loop
p = pginit.copy()
start_time = pybullet_api.time.time()
while True:
t = pybullet_api.time.time() - start_time
if t > to_mpcc_planner.Tmax:
break
boxpose = box.get_pose()
dqgoal = ik.compute_target_velocity(q, p)
q += dt * dqgoal
state = plan(t)
SpC = optas.vertcat(0.5 * Ly, 0.5 * Ly * optas.tan(state[3]))
GpC = state[:2] + rot2(state[2] + state[3] - 0.5 * optas.np.pi) @ SpC
dr = rot2(state[2] + state[3] - 0.5 * optas.np.pi) @ optas.vertcat(
optas.cos(-0.5 * optas.np.pi), optas.sin(-0.5 * optas.np.pi)
)
GpC -= dr * eff_ball_radius # accounts for end effector ball radius
p = GpC.toarray().flatten().tolist() + [0.06]
box_position = state[:2].tolist() + [0.06]
plan_box.reset(
base_position=box_position,
base_orientation=yaw2quat(state[2]).toarray().flatten(),
)
kuka.cmd(q)
pybullet_api.time.sleep(dt * float(gui))
pb.stop()
pb.close()
return 0
if __name__ == "__main__":
sys.exit(main())